

522. Wilhelm and Else Heraeus-Seminar

Detection of Electron-Antineutrinos in Liquid Scintillators via the Inverse Beta Decay - Event Signatures and Possible Backgrounds M. HOFMANN, L. OBERAUER, AND S. SCHÖNERT

Physics Program: Natural and Anthropogenic Sources of Electron-Antineutrinos ($\bar{\nu}_e$)

Reactor Neutrinos

• From β^- -decays of fission products in the reactor cores • Energies up to \sim 12 MeV

- Total Flux: $2 \cdot 10^{20} \, s^{-1} \cdot \, GW_{th}^{-1}$ • Investigation of ν -oscillation parameters:
- $-\vartheta_{13}$ at short baselines $(L \approx 1 \text{ km})$

- From β^- -decays of 40 K and isotopes from the U- and Thchain in the earth's interior
- Maximum neutrino energies:
- –U-chain: 3.3 MeV
- -Th-chain: 2.25 MeV
- $-^{40}$ K: 1.3 MeV (below detection threshold)
- Connected to the heat pro-

Supernova Neutrinos and DSNB

- Mainly thermal production in core-collapse SN
- Quasithermal spectrum with $T_{\bar{\nu}_e} \approx 5 \, \text{MeV}$
- DSNB redshifted with $E_{\nu} \lesssim 40 \, MeV$
- Investigation of supernova properties (explosion mecha-

-Solar mixing parameters with LENA (L \approx 120 km) Non-proliferation studies

• Tests of Lorentz violation [5]

duction of the earth

 Information on the distribution of radioactive isotopes in the earth

nism, rate)

 Information on neutrino mass $\mathsf{m}_{
u}$

Inverse Beta Decay	Radioactivity-Induced Background	Muon-Induced Background
$\overline{\nu_e + p \rightarrow e^+ + n}$ • High cross section: $\sigma_{IBD} \approx 9.30 \cdot 10^{-42} \left(\frac{E_{\nu}}{10 MeV}\right)^2 cm^2$ • Energy threshold: 1.8 MeV • Coincident signal between positron and neutron, in space (<i>few cm</i>) and time (<i>several µs</i>) $\Rightarrow Clear event signature$	Accidental coincidences • Random coincidences between positron-like and neutron-like event • Mainly radioactivity-induced ⇒ Background at small energies (≲ 3 MeV) • Greatly reduced by Gd doping: - E _{delayed} ≫ E _{vis} (α, β, γ) - Δt shortened to ≈ 30 µs → Stability of Gd-doped liquid scintillator proven at Double Chooz	$\frac{\beta \text{-n-emitters (}^9\text{Li and }^8\text{He}\text{)}}{1^2\text{C }(\mu, 3p)^9\text{ Li and }^{12}\text{C }(\mu, 4p)^8\text{ He}}$ • Electron from β^- -decay mimics prompt event, emitted neutron delayed event $\frac{9^{-1}\text{Li}}{1.1\%} + \frac{11.81\text{ MeV}}{11.28\text{ MeV}} + \frac{1.5\%}{7.94\text{ MeV}} + \frac{1.5\%}{7.94$
rompt signa		15.8% 2.71 MeV

d l

Prompt Event (p⁺)

• Energy deposition of the kinetic energy of the p^+ (+1.022 MeV by annihilation) • Energy strongly correlated to the neutrino energy

 \Rightarrow Neutrino spectroscopy possible

Delayed Event (n)

• Capture of the thermalized neutron on a nucleus A:

 $n + A \rightarrow (A + 1)^* \rightarrow (A + 1) + \gamma$

• Subsequent γ -emission:

Hydrogen: $E_{\gamma} \approx 2.2 \, MeV$ $\mathsf{E}_{\gamma}^{'}\approx$ 4.9 MeV Carbon: Gadolinium: $E_{\gamma} \approx 8 \,\text{MeV}$

Mean energy of the Gd-neutron capture peak in the Double Chooz Target liquid as function of elapsed days [2]

(α ,n)-Reactions

- Fast neutrons created directly in the scintillator
- KamLAND: dominant reaction: ${}^{13}C(\alpha, n)^{16}O$ with α -particle from ²¹⁰Po [4]
- \rightarrow One (α ,n)-event per 3.1 \cdot 10⁷ α -decays of ²¹⁰Po
- Neutron energies up to 7.3 MeV, but visible energy quenched
- \Rightarrow Background at small energies (\leq 3 MeV)
- \Rightarrow Discrimination by Pulse Shape Analysis

Simplified decay scheme of the β -n-emitter ⁹Li

- Long half-lives (178.3 ms and 119 ms)
- Continuous energy distribution up to $\sim 10 \,\text{MeV}$
- \Rightarrow Dangerous Background at low energies

Fast neutrons & Stopping muons

- Prompt event: Proton recoiling off neutron // Energy deposition by µ
- Delayed event: Subsequent capture of thermalized neutron // µ-decay
- \rightarrow Statistically separable by Δt
- DC: Flat energy spectrum up to tens of MeV [1,2,3]
- ⇒ Dangerous Background at all energies
- \Rightarrow Discrimination by Pulse Shape Analysis

Double Chooz: Detector Design and Results

References

- Target: 10.3 m³ Gd-loaded unpurified scintillator
- \rightarrow Measured concentration of U and Th (BiPo

- analysis [6]): U: $(5.2 \pm 0.4) \cdot 10^{-15} \text{ g/g}$ Th: $(2.1 \pm 0.1) \cdot 10^{-13} \text{ g/g}$
- \Rightarrow Internal prompt trigger rate \sim **0.4 Hz**·m⁻³ \Rightarrow Accidental coincidences: (0.261 \pm 0.002) d⁻¹ (Measured with offtime window [2])
- \Rightarrow (α ,n)-reactions: < 1.72 · 10⁻² · d⁻¹ [6]
- 300 m.w.e. overburden in hill topology \rightarrow Measured µ-rate: **46 Hz** in InnerVeto
- \Rightarrow Cosmogenic isotopes: (1.25 \pm 0.54)· d⁻¹ (Fit to Δt distribution $\mu \leftrightarrow IBD$ [2])
- \Rightarrow Fast neutrons: (0.30 \pm 0.14) d⁻¹ $(E_{prompt} > 12.2 \, MeV \, and \, \Delta t > 10 \, \mu s \, [2])$
- \Rightarrow Stopping muons: (0.34 \pm 0.18) \cdot d⁻¹ $(E_{prompt} > 12.2 \text{ MeV and } \Delta t < 10 \, \mu s$ [2])
- Rates confirmed during reactor off period

- Energy spectra of the various background contributions measured during 7.5 days reactor off, confirming the predicted rates
-] Y. Abe et al., Double Chooz collaboration, PRL 108, 131801 (2012)
- [2] Y. Abe et al., Double Chooz collaboration, Phys. Rev. D86, 052008 (2012)
- [3] Y. Abe et al., Double Chooz collaboration, Phys. Rev. D87, 011102 (2013)
- [4] S. Abe et al., KamLAND collaboration, PRL **100**, 221803 (2008)
- [5] Y. Abe et al., Double Chooz collaboration, Phys. Rev. D86, 112009 (2012)
- [6] M. Hofmann, Ph.D. thesis, TU München (2012)