Development of an Optical Module for LENA

Marc Tippmann
for the LENA working group

Technische Universität München
Lehrstuhl für Experimentelle Astroteilchenphysik

DPG Frühjahrstagung, Göttingen
2012/02/29
Why do we need photosensors in LENA?
Which demands result from our physics agenda?

- Event detection in liquid scintillator detectors:
 Neutrino scatters off electron
 \rightarrow electron freed
 \rightarrow loses kinetic energy via excitation of scintillator molecules
 \rightarrow emit light at deexcitation
Why do we need photosensors in LENA? Which demands result from our physics agenda?

- Event detection in liquid scintillator detectors:
 Neutrino scatters off electron
 → electron freed
 → loses kinetic energy via excitation of scintillator molecules
 → emit light at deexcitation

- Low interaction cross-section
 → big active volume
 → big surface (9700m²)

Sensor requirements:
- sensitive around 420nm
- pressure-withstanding, long-term reliability
- low price/detector area
Why do we need photosensors in LENA? Which demands result from our physics agenda?

- Event detection in liquid scintillator detectors:
 Neutrino scatters off electron → electron freed
 → loses kinetic energy via excitation of scintillator molecules
 → emit light at deexcitation

- Low interaction cross-section → big active volume
 → big surface (9700m²)

- Deposited energies: 200keV - ≈5GeV
 → 700 - 15·10⁶ photons arriving at photosensor surface

- Low energies: only energy of event available to distinguish neutrino sources

- High energies (e.g. neutrino beam): also directionality

Sensor requirements:

- sensitive around 420nm
- pressure-withstanding, long-term reliability
- low price/detector area
- single photon detection, high detection efficiency, large dynamic range
- good energy resolution
- low fake detections: dark count, afterpulsing, good time resolution
Why do we need photosensors in LENA? Which demands result from our physics agenda?

• Event detection in liquid scintillator detectors:
 Neutrino scatters off electron → electron freed → loses kinetic energy via excitation of scintillator molecules → emit light at deexcitation

• Low interaction cross-section → big active volume → big surface (9700m²)

• Deposited energies: 200keV - ≈5GeV → 700 - 15·10⁶ photons arriving at photosensor surface

• Low energies: only energy of event available to distinguish neutrino sources

• High energies (e.g. neutrino beam): also directionality

• Background (radioactivity inside + outside of detector, atmospheric muons, ...); neutrino beam → event reconstruction

Sensor requirements:
- sensitive around 420nm
- pressure-withstanding, long-term reliability
- low price/detector area
- single photon detection, high detection efficiency, large dynamic range
- good energy resolution
- low fake detections: dark count, afterpulsing good time resolution
- low radioactivity
How can we obtain limits for the sensor requirements?

- Determine influence of sensor properties on overall detector behavior
- Detector properties needed to achieve physics goals known → can infer demands on sensor
- Quantify through geant4 Monte Carlo simulations + comparison with previous liquid scintillator experiments (Borexino, KamLAND)
- In progress, first results

Talks:

- Randolph Möllenberg T110.3 (previous talk)
- Dominikus Hellgartner T31.4 (Fr, 10:15)
Which photosensors can fulfill the requirements?

- Photomultipliers (PMTs)
 + Fulfill all requirements
 → Sensor of choice at the moment

Which sensors could fulfill them?

- Si-Photomultipliers (SiPMs):
 + Better energy resolution, time resolution, detection efficiency
 - Dark count possibly too high
 → Study in detail

- Hybrid detectors
 • Crucial question: Available in high quantities in time for construction?
 • Possibly yes: QUASAR, X-HPD, HAPD, QUPID
 • Probably not: Abalone, LAPPD
Which sensors could fulfill the requirements?

- **Featured sensor at the moment: PMTs**
 - Most promising models:
 - Hamamatsu R11780 (12“) → ≈ 31000 PMTs
 - Electron Tubes Enterprises D784 (11“) → ≈ 40000 PMTs

- Need to find out missing characteristics for all candidate sensor types

- Also measure properties of candidate PMT series to verify compliance + optimize performance
How can we determine the missing properties?

- Photosensor testing facility is being set up in Munich
 - Was treated in the diploma thesis of Michael Nöbauer

- Measure timing properties, dynamic range, dark count, afterpulsing, energy resolution, ...
How can we determine the missing properties?

• Need to illuminate sensors...
 a) ...with photons arriving with very low timing uncertainty
 → ps diode laser (Edinburgh Instruments EPL-405mod)
 b) ...uniformly over the whole area → widen beam radius from 100µm to 20cm
 • So far: tried this with lenses with extremely small focal length (ball lenses /GRIN lenses)
 • Works good: in first trial ±20% intensity homogeneity in 12×18cm window
 • ...but not good enough: goal ≈1%, probably not reachable due to inhomogenities in laser beam profile + optics surfaces

→ Resort to classic solution with diffusor
How can we determine the missing properties?

- Rest of setup is working
 - Can do spot measurements
 - First test measurements in good agreement with measurements done at the LNGS, Gran Sasso
 - Recently improved measurement rate from \(\approx 10 \text{Hz} \) to \(>2 \text{kHz} \) by saving 1k pulses / file instead of 1
 - Evaluation software is running (transit time + charge distribution), now implement more features
Optical Module for PMTs
Most probably PMTs will be the photosensor for LENA

→ **What components do we need for optimum performance?**

- PMT
- Increase active area + limit field of view
 → Light concentrator (*Winston Cone*)
- Shield PMT from earth magnetic field
 → metal
- Power supply
 → Voltage divider
- Pressure
 → **Encapsulation**, acrylics glass window + stainless steel housing
- During filling, tank is filled with water → conductive
 → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: *polyurethane*

- Need to shield scintillator from radioactive contamination contained in the PMT’s glass → layer of inactive buffer liquid between scintillator and PMTs
Most probably PMTs will be the photosensor for LENA

→ What components do we need for optimum performance?

• PMT
 • Increase active area + limit field of view
 → Light concentrator (Winston Cone)
 • Shield PMT from earth magnetic field
 → mu metal
• Power supply
 → Voltage divider
• Pressure
 → Encapsulation, acrylics glass window + stainless steel housing
 • During filling, tank is filled with water → conductive
 → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane

• Need to shield scintillator from radioactive contamination contained in the PMT’s glass → layer of inactive buffer liquid between scintillator and PMTs

 New design: include buffer liquid into pressure encapsulation
 • Possible due to advanced background rejection algorithms
 → Bigger active volume!
Most probably PMTs will be the photosensor for LENA

→ What components do we need for optimum performance?

• PMT
 • Increase active area + limit field of view
 → Light concentrator (Winston Cone)
 • Shield PMT from earth magnetic field
 → mu metal
• Power supply
 → Voltage divider
• Pressure
 → Encapsulation, acrylics glass window + stainless steel housing
 • During filling, tank is filled with water → conductive
 → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane
• Need to shield scintillator from radioactive contamination contained in the PMT’s glass → layer of inactive buffer liquid between scintillator and PMTs
 New design: include buffer liquid into pressure encapsulation
 • Possible due to advanced background rejection algorithms
 → Bigger active volume!
• Possibly also HV transformation + signal preprocessing on site
 • Central unit for arrays of PMTs, not part of optical module
 • Studied in PMm² project
Most probably PMTs will be the photosensor for LENA

→ **What components do we need for optimum performance?**

- **PMT**
 - Increase active area + limit field of view
 → Light concentrator (*Winston Cone*)
 - Shield PMT from earth magnetic field
 → *mu metal*
- **Power supply**
 → Voltage divider
- **Pressure**
 → **Encapsulation**, acrylics glass window + stainless steel housing
 → During filling, tank is filled with water → conductive
 → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: *polyurethane*
- Need to shield scintillator from radioactive contamination contained in the PMT’s glass → layer of inactive buffer liquid between scintillator and PMTs
 → **New design**: include buffer liquid into pressure encapsulation
 - Possible due to advanced background rejection algorithms
 → Bigger active volume!
- Possibly also HV transformation + signal preprocessing on site
 - Central unit for arrays of PMTs, not part of optical module,
 - Studied in PMm² project
Pressure encapsulations

How to develop an encapsulation?

- *Design, pressure simulations*, build prototype, pressure tests
Pressure encapsulations

How to develop an encapsulation?

- *Design, pressure simulations*, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

- Created engineering drawings
 - ...for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 - ...for 5-10” PMTs of Hamamatsu + Electron Tubes Enterprises
Pressure encapsulations

How to develop an encapsulation?

• *Design, pressure simulations*, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

• Created engineering drawings
 • ...for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 • ...for 5-10” PMTs of Hamamatsu + Electron Tubes Enterprises

• Did first Finite Element Analysis simulations with SolidWorks to determine necessary thicknesses + weight
 • Need encapsulations due to pressure, but weight = radioactivity → keep them as thin as safety allows
Pressure encapsulations

How to develop an encapsulation?

• *Design, pressure simulations*, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

• Created engineering drawings
 • ...for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 • ...for 5-10” PMTs of Hamamatsu + Electron Tubes Enterprises

• Did first Finite Element Analysis simulations with Solidworks to determine necessary thicknesses + weight
 • Need encapsulations due to pressure, but weight = radioactivity → keep them as thin as safety allows

• Simulations so far were still for the old optical module without the buffer liquid → have to adapt design

• Currently cross-checking results + dependence on simulation parameters and improving simulations → lots of basic questions to be cleared

→ *If somebody has experience with FEA simulations, any advice or help is most welcome!*
Conclusions

- Physics goals of LENA set hard requirements for photosensors
- Have started to determine influence of photosensor properties on detector performance with Geant4 Monte Carlo
- Have constructed photosensor test facility in Munich to measure missing sensor properties
- So far PMTs favoured option
 - Some other promising alternative sensors have to be tested
- Designed an optical module for PMTs consisting of Winston Cone, buffer liquid, mu metal, voltage divider, pressure encapsulation
- Have completed first designs + FEA simulations of pressure encapsulations → optimize designs, cross-check simulation results
Backup slides
Influence of sensor properties on detector behavior

- Determine influence through Geant4 based Monte Carlo simulations

- Position and energy resolution (Dominikus Hellgartner)
 - Timing uncertainty:
 - First simulations, still fighting some problems with small timing uncertainties
 - First impression: no big influence
 - Dark Noise:
 - No big influence for energies around 1MeV or bigger
 - For 200keV position + energy resolution ≈30% worse

- \(\alpha/\beta\)-discrimination (Randolph Möllenberg)
 - Dark Noise:
 - Strong influence on efficiency
 - Late Pulses + Fast Afterpulses
 - Negligible effect
 - Winston Cones (50° opening angle)
 - Improve separation by factor two
Alternative photosensor types

- Crucial question: Available in high quantities in time for construction?

- Possibly available for first detector:
 - **QUASAR (14.6“):**
 - Layout: Photocathode → HV → scintillator crystal → small PMT;
 - Very promising sensor in most regards (tts, DN, AP, ...), are even working to further improve design with faster scintillator + fast small HQE PMT;
 - Drawbacks: currently no manufacturer, dynamic range=?
 - **X-HPD (8“):**
 - Layout: basically as QUASAR
 - Drawbacks: high dark rate, 100-10Hz/cm², dyn. range=?
 - **HAPD (13“):**
 - Layout: Photocathode → HV → APD
 - Expect commercial availability in spring 2012 (status Jan. 2011)
 - Drawbacks: dyn. range?
 - **QUPID (3“):**
 - Layout: same as HAPD
 - Drawbacks: small size, designed for LAr/LXe, dark count @RT =?, QE=?, dyn. range?

- Need to test samples to determine all properties
Alternative photosensor types

• Probably not available in time:
 • **Abalone** (≈13“):
 • Layout: Photocathode → HV → scintillator crystal → G-APD
 • Advantages: simple, robust + cheap design
 • Status: Prototypes not yet stable under atmospheric pressure

• **LAPPD** (scalable):
 • Layout: Photocathode → 2 microchannel plates → anode striplines read out at both ends
 • Advantages: ps time resolution, large area, position sensitive, cheap(?)
 • Status: working prototypes of MCP sheets + electronics, QE still low, no complete prototype yet
Pressure withstanding PMT encapsulations for LENA: Pressure simulations

• Simulate behaviour under pressure with a Finite Elements Analysis (FEA) simulation software
 – Engineering drawings and FEA pressure simulations were done with same software

• Software: SolidWorks Educational Edition Academic Year 2010-2011 SP4.0, *Simulation Premium package*

• Settings: Linear static study, 12bar pressure, node distance 3mm ± 0.15mm

• Materials: High impact resistant acrylic glass, 1,4404 stainless steel X2CrNiMo17-12-2

• Computer: Intel i7-2600, 8GB DDR3-RAM, AMD Radeon HD 6450 1GB GDDR3, Win7 Prof. 64bit

• So far designs + simulations for 5 candidate PMTs:
 • Hamamatsu: R7081 (10“), R5912 (8“), R6594 (5“)
 • Electron Tubes Enterprises Ltd.: 9354 (8“), 9823 (5“)

• *Was treated in a bachelor thesis by German Beischler*
 • *In consultance with Harald Hess (head of workshop + SolidWorks expert of our chair)*
 • *Continues these studies!*
Pressure withstanding PMT encapsulations for LENA: Pressure simulations

Procedure:

• **Import PMT contour** from engineering drawing in datasheet
• **Rotate** to obtain model of PMT
• **Construct encapsulation** based on PMT dimensions and experience from design of the Borexino + Double Chooz encapsulation
• Simulate encapsulation with 12bar pressure applied
 • **Apply forces → meshing → simulate** to determine factor of safety
 • Vary thicknesses of acrylic glass + stainless steel to find minimum values
• Compare results for different designs regarding weight (U, Th, K impurities in materials), surface (adsorbed Rn) and construction costs
Pressure withstanding PMT encapsulations for LENA

Pressure simulation results:
Hamamatsu R7081 (10“)

Conical encapsulation:
- Steel: 2mm thickness, 4.38kg
- Acrylic glass: 4mm thickness, 0.86kg
- Total surface: 0.69m²

Spherical encapsulation:
- Steel: 0.5mm thickness, 4.08kg
- Acrylic glass: 5mm thickness, 1.48kg
- Total surface: 1.01m²
Pressure withstanding PMT encapsulations for LENA

Pressure simulation results:
Hamamatsu R5912 (8“)

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Steel</th>
<th>Acrylic glass</th>
<th>Total surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conical</td>
<td>1mm thickness, 3.24kg</td>
<td>3mm thickness, 0.50kg</td>
<td>0.53m²</td>
</tr>
<tr>
<td>Spherical</td>
<td>0.5mm thickness, 4.66kg</td>
<td>4mm thickness, 1.10kg</td>
<td>0.83m²</td>
</tr>
</tbody>
</table>
Pressure withstanding PMT encapsulations for LENA

Pressure simulation results:
Hamamatsu R6594 (5”)

Conical encapsulation:
Steel: 1mm thickness, 2.77kg
Acrylic glass: 2mm thickness, 0.22kg
Total surface: 0.37m²

Spherical encapsulation:
Steel: 0.5mm thickness, 2.75kg
Acrylic glass: 4mm thickness, 0.94kg
Total surface: 0.78m²
Pressure withstanding PMT encapsulations for LENA

Pressure simulation results:
Hamamatsu R6594 (5"")

Elliptical encapsulation:
- Steel: 2mm thickness, 3.06kg
- Acrylic glass: 2mm thickness, 0.22kg
- Total surface: 0.41m²

Cylindrical encapsulation:
- Steel: 0.5mm thickness, 2.61kg
- Acrylic glass: 2mm thickness, 0.22kg
- Total surface: 0.46m²