LENA: tracking detector?
Applications for GeV neutrinos

Presented by
Juha Peltoniemi

Work done in
Excellence Cluster Universe
Technische Universität München

In collaboration with
Michael Wurm, Lothar Oberauer, Franz von Feilitzsch and others
High energy physics with LENA

- Performance of LENA at high energies not known too well
- Earlier studies up < 1 GeV
 - Proton decay and studies for beta beams (Teresa)
- Some studies being made for HanoHano
 - Learned (Hawaii)
- For Borexino muon studies
 - echidna,...
Simulate high-energy measurement

• A simple Java app “Scinderella.java”
• Initial brute-force simulations to get the feeling
 • Not designed to be a full analysis program
• Uses a simplified internal event generator
• Uses a simplified model for the detector
 • Reduced number of photosensors, no deficiencies
 • Scintillator decay time and pmt time jitter modelled
• Records observation times of photons in photocounters
 • Selectable data loss by errors, smoothing etc
• Compare the light signals of “true event” to “test event”
 • “true event” Monte Carlo
 • “test event” analytic
DETECTOR
Volume = 21206 m³
Photosensor coverage = 6 %
PDE of photosensors = 100 %

ORIGINAL EVENT QE with neutrino energy 2000.0 MeV
Depositable energy 1679.60 MeV Measurable energy 1984.00 MeV
muon:1592.13 MeV and 8.00 m.
proton:287.47 MeV and 0.554 m. vertexEnergy = 0.00 MeV

MEASUREMENT
measured 320332 photons of 20.56 M (1.56 %)

FIT (done fit for selected event)
ln(L) = 1097186 s=0.00
Vertex at (0.54, 0.42, 14.05)64.60 MeV t0 = 67.73 ns.
Deposit energy 1945.02 MeV Measured energy 2049.42 MeV
Inferred neutrino energy 2068.07 MeV with uncertainty 16.65 MeV
Neutrino energy from lepton angle: 2081.33 MeV [GES]
[0] muon:1542 MeV and 8.24 m.
[1] proton:238 MeV and 0.405 m.
[2] -0 MeV and 0.000 m.
[3] -0 MeV and 0.000 m.
Predict 319721 photons of 20.49 M emitted. (1.56 %)
best fit original, with measured E= 1984.00, Chi = 922337203885477580

COMMAND: Fit selected event
event generated
VIEW: top
LAYER: photons
Mean = 508.46 and variance = 307.20

FINAL VERDICT
Error in measured energy 65.42 MeV = 3.30 %
Error in lepton energy 50.16 MeV = 3.15 %
Error in lepton track 0.24 m = 3 %, vertex: 0.11 m.
Error angle L 0.01 rad = 0 deg (p 0.49 rad = 28 deg)

PMT[1:12]@([3.706.10,17.86])
1326 photons 1320 photons
Duration 87.89 ns Duration 107.00 ns
Time 3.97 ns Time 4.27 ns
Mean time 8.65 ns Mean time 9.20 ns
Decay signal = 18 Decay signal 570.54
+18 +18.00
ln(L)-4140.40
Volume = 21206 m³
Photosensor coverage = 6 %
PDE of photosensors = 100 %

ORIGINAL EVENT DIS with neutrino energy 4000.0 MeV
Depositable energy 3460.80 MeV Measurable energy 3984.00 MeV
muon:2033.87 MeV and 10.05 m.
proton:141.28 MeV and 0.166 m. vertexEnergy =1.08 MeV

MEASUREMENT
measured 600405 photons of 37.36 M. (1.59 %)

FIT (done fit for selected event)
ln(L) = 2173201 s=0.00
Vertex at (-6.07, 0.14, 15.89) 37.72 MeV t0 = 46.03 ns.
Deposit energy 3606.53 MeV Measured energy 4129.73 MeV
Inferred neutrino energy 4387.96 MeV with uncertainty 258.23 MeV
Neutrino energy from lepton angle: 5311.41 MeV [DIS]

[0] muon:2137 MeV and 10.52 m.
[2] pion:87 MeV and 0.256 m. 73.71 ns.
[3] pion:194 MeV and 0.796 m. 38.80 ns.

Predict 598310 photons of 37.86 M emitted. (1.58 %)
bestfit original, with measured E= 3982.70, Chi = 922337203685477580
DETECTOR
Volume = 21206 m³
Photosensor coverage = 6 %
PDE of photosensors = 100 %

ORIGINAL EVENT SPP with neutrino energy 4000.0 MeV
Depositable energy 3845.19 MeV Measurable energy 3984.00 MeV
electron: 2004.02 MeV and 5.78 m.
proton: 1835.67 MeV and 8.26 m. vertexEnergy = 0.00 MeV
pion: 5 MeV (157 ns)

MEASUREMENT
masured 675485 photons of 41.90 M. (1.61 %)

FIT (cone fit for selected event)
ln(L) = 2302.063 s = 0.00
Vertex at (0.89, 0.15, 14.71) t0 = 63.82 ns.
Deposited energy 3861.59 MeV Measured energy 4000.40 MeV
Inferred neutrino energy 4026.32 MeV with uncertainty 25.92 MeV
Neutrino energy from lepton angle: 3675.42 MeV [SPP]
[0] electron: 1978 MeV and 5.76 m.
[1] proton: 1878 MeV and 8.50 m.
[2] pion: 5 MeV and 0.003 m. 157.00 ns.
Predict 811213 photons of 43.18 MeV emitted. (1.88 %)
best fit original, with measured E= 3984.00, Chi = 922337203085477580

FINAL VERDICT
Error in measured energy 16.40 MeV = 0.41 %
Error in lepton energy -25.80 MeV = -1.28 %
Error in lepton track 0.02 m = 0 %, vertex: 0.06 m.
Error angle L 0.03 rad = 2 deg (p 0.00 rad = 0 deg)

COMMAND: Fit selected event
event generated

VIEW: top

LAYER: chi

932 photons
Duration 130.39 ns Duration 95.00 ns
Time 13.93 ns Time 13.59 ns
Mean time 10.35 ns Mean time 9.75 ns
Decay signal = 7 Decay signal = 0.00
+7 +2.59
ln(L) = -3615.83
Results so far

- Very good fit to simple events
 - Almost absolute flavor recognition (even without muon decay signal)
 - Positional accuracy a few cm
 - Angular accuracy few degrees
 - Neutrino angle limited by unseen nuclear recoils
- Good fit to more complicated events, too
 - Three tracks can be fitted if well separated
 - More tracks very challenging
 - Muon track always fittable (if exists)
- So far no flavor misidentifications for any topology
 - Only unconsidered major fluctuations or rare rescatterings
Energy resolution

• In simple events all tracks fitted better than 1 % accuracy
• In complicated events
 • Single tracks fitted less accurately
 • Total light output is fitted at few % accuracy
• Typically the accuracy of the routine better than 1 %
• Larger uncertainties:
 • Nuclear physics: Carbon binding energy, nuclear spillouts etc: uncertainty of 20-40 MeV
 • Misrecognized hadrons: quenching factor significant
 • Neutrons so far lost energy – to be studied more
• May assume 5 % accuracy, sufficient for neutrino beams
Recognizing antineutrinos and neutrinos?

- Recognize prompt nucleon?
 - Neutron can be recognized by absorption signal (95 %)
 - Neutron track may be followed
 - Proton track distinguishable if energy > 100 MeV
 - But: nucleon interchange within nucleus (20-30 %) or charged pions may complicate the analysis

- Muon charge can be measured with magnetic field?
 - Bending in a moderate magnetic field 0.1 T or less clearly observable
 - Fluctuations in trajectory (Coulombian scat.) limiting factor
 - Magnetized liquid scintillator needs different photosensor technology
Bending in magnetic field

DETECTOR
Volume = 21206 m^3 \(B = 0.05 \) T
Photosensor coverage = 6 % \(\text{FDE of photosensor} = 100 \% \)

ORIGINAL EVENT
QE with neutrino energy 3000.0 MeV
Deposable energy 2858.80 MeV \(\text{Measurable energy} = 2963.00 \) MeV
muon: 2664.15 MeV and 12.87 m, vertexEnergy = 0.00 MeV
proton: 194.45 MeV and 0.290 m.

MEASUREMENT
measured 307529 photons of 31.16 M. (0.99 %)

FIT (studied charge)
\[\ln(L) = 1109822 s=0.00 \]
Vertex at (-3.41, 0.02, 0.13) 0.00 MeV \(t_0 = 60.79 \) ns.
Deposited energy 2862.65 MeV \(\text{Measured energy} = 2967.95 \) MeV
Inferred neutrino energy 3101.45 MeV with uncertainty 134.39 MeV
Neutrino energy from lepton angle: 2949.58 MeV [QE]
N0 muon(-1) 2643 MeV and 12.78 m.
[1] proton: 220 MeV and 0.360 m.
Predict 307745 photons of 2.28 M emitted. (13.51 %)
best fit original, with measured E = 2963.00, \(\text{Chi} = 922337203685477580 \)

FINAL VERDICT

- 177 photons
- Duration 82.34 ns
- Time 60.88 ns
- Mean time 6.41 ns
- Decay signal = 1
- +1
- PMT quality perfect
- 171 photons
- Duration 60.00 ns
- Time 61.13 ns
- Mean time 6.16 ns
- Decay signal 0.76
- +0.76
- \(\text{In(L) 0.14} \)

COMMAND:
Check charge

VIEW:
top

LAYER:
photons
Considerations for detector design

- **Important**
 - Fast scintillator (< 5 ns)
 - Small scattering of light in liquid
 - Very good photosensors & electronics:
 - Total photon count & start time for each PMT very important
 - Recording individual photon times would be nice but not mandatory
- **Less relevant**
 - Light yield & light attenuation
 - Noise
- The buffer and the shield can be used to extend the fiducial volume
Atmospheric neutrinos

• Vertical direction optimal – upward going neutrinos best
• Three interesting ranges
 • 10-20 GeV: upward-going neutrinos, satisfactory energy resolution and good angular resolution
 • Around 3 GeV – matter resonance: ability to differentiate neutrinos from antineutrinos very valuable
 • Near 100 MeV: study solar neutrino parameters. A small window for LENA?
• A task to be done
Neutrino beams

- **Conventional wide band beam: 1-6 GeV (< 100 M€)**
 - Baseline > 1000 km preferred
 - Vertical alignment not a burden if wide enough
 - Good for $\sin^2(2\theta) > 10^{-2}$

- **Beta beam: 300 MeV – 5 GeV (1 G€)**
 - LENA very good with a high-energy beta beam
 - May study $\sin^2(2\theta) > 10^{-3}$ or less, depending on beam power and detector size
 - Larger detectors preferable, with horizontal alignment

- **Neutrino factory 3 GeV – 50 GeV (>2 G€)**
 - Requires a magnetic detector (B > 0.1 T)
 - For $E > 5$ GeV detector to be aligned parallel to the beam
 - Good for $\sin^2(2\theta) \approx 10^{-3} ... 10^{-4}$
Conclusions

- Large volume liquid scintillation detector serves as a good tracking detector for high-energy events (> 1 GeV)
 - Flavor recognition very good
 - Energy resolution typically better than 5 %
 - Capacity mostly limited by physics
- Very good detector for neutrino beams
 - Wide band beam
 - High-energy beta beam
 - Low-energy neutrino factory: Magnetized liquid scintillator
- Interesting for atmospheric neutrinos
- Challenges for the design of the detector
 - Light sensors, electronics, data acquisition
WBB with LENA @2300 km
Some comparisons

Left Panel:
- Title: Required fiducial mass of the detector to measure non-zero theta_13
- Plot: Color gradient from yellow to purple, indicating mass in units of kg/kt.
- Axes:
 - Y-axis: log(sin(\theta/2))
 - X-axis: log(sin(\theta/2))

Right Panel:
- Title: Theta reach: theta_13 and baseline for 50 kt
- Plot: Color gradient from yellow to purple, indicating energy resolution.
- Axes:
 - Y-axis: log(sin(\theta/2))
 - X-axis: log(sin(\theta/2))

Legend:
- Color bar for left panel: 0 to 300 kg/kt
- Color bar for right panel: 0 to 10 units