

V.Egorov (DLNP JINR, Dubna)

DANSS - detector of the reactor antineutrino

GEMMA experiment: search for the NMM

OTHER DESIGNATION.

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)
- Life-time ~ 320 days

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)
- Life-time ~ 320 days
- 1500 kg of ²³⁵U is burned out

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)
- Life-time ~ 320 days
- 1500 kg of ²³⁵U is burned out
- and 311 kg of ²³⁹Pu is produced

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)
- Life-time ~ 320 days
- 1500 kg of ²³⁵U is burned out
- and 311 kg of ²³⁹Pu is produced
- which changes the flux and energy spectrum of the neutrino emitted

- GEMMA experiment: search for the NMM
- Since 2005 we do NMM measurements under the unit #2 of the KNPP – a standard 3GW_{th} PWR (BB3P-1000)
- Life-time ~ 320 days
- 1500 kg of ²³⁵U is burned out
- and 311 kg of ²³⁹Pu is produced
- which changes the flux and energy spectrum of the neutrino emitted
- Would like to monitor the neutrino spectrum and flux (2.7.10¹³ v/cm²/s)

For the monitoring we needed anything simple and reliable

For the monitoring we needed anything simple and reliable

20 years ago our colleagues from KI were the first who tried to perform the neutrino monitoring RONS (Rovno, UA) 1986-1990

Liquid scintillator (~1 m³) in a special laboratory

«We» - means JINR (Dubna)

«We» - means JINR (Dubna)

«We» - means JINR (Dubna)

ITEP (Moscow)

Generally ~1 m³ of liquid scintillator is used

 Generally ~1 m³ of liquid scintillator is used RONS (SU), NUCIFER (FR), ANGRA (BR), SONGS1 (US), KASKA (JP)

- Generally ~1 m³ of liquid scintillator is used RONS (SU), NUCIFER (FR), ANGRA (BR), SONGS1 (US), KASKA (JP)
- 😕 But: we have no experience in LS

- Generally ~1 m³ of liquid scintillator is used RONS (SU), NUCIFER (FR), ANGRA (BR), SONGS1 (US), KASKA (JP)
- 😕 But: we have no experience in LS
- 😕 But: they say it is problematic (Gd...)

- Generally ~1 m³ of liquid scintillator is used RONS (SU), NUCIFER (FR), ANGRA (BR), SONGS1 (US), KASKA (JP)
- 😕 But: we have no experience in LS
- 😕 But: they say it is problematic (Gd...)
- But: is there any SANE DIRECTOR of NPP who allows to bring 1 ton of gasoline close to his reactor ?!

- Generally ~1 m³ of liquid scintillator is used RONS (SU), NUCIFER (FR), ANGRA (BR), SONGS1 (US), KASKA (JP)
- 😕 But: we have no experience in LS
- 🛞 But: they say it is problematic (Gd...)
- But: is there any SANE DIRECTOR of NPP who allows to bring 1 ton of gasoline close to his reactor ?!
- ③ How much better is plastic

Detection idea: Inversed Beta-Decay

Signature of the IBD registration

Signature of the IBD registration

Signature of the IBD registration

•Measure the actual reactor power (N_v)

- •Measure the actual reactor power (N_v)
- Deduce the actual fuel composition (E_v)

- •Measure the actual reactor power (N_v)
- Deduce the actual fuel composition (E_v)
<u>Detection of the reactor</u> <u>neutrino would allow:</u>

- •Measure the actual reactor power (N_v)
- Deduce the actual fuel composition (E_v)

Weak (v-e) cross-section

<u>Detection of the reactor</u> <u>neutrino would allow:</u>

- •Measure the actual reactor power (N_v)
- Deduce the actual fuel composition (E_v)

•Weak (v-e) cross-section

•On-line reactor monitoring (tomography?) - especially important in view of the future FBR (with

XY-view SC Laver of **N-capturer** (Gd,Cd,...) **XY-view**

geometry of neutrino detector **# SCINTILLATOR BLOCKS** # in X axis bottom-scinblock.number-of-columns=100 # in Y axis bottom-scinblock.number-of-rows=25 # in X axis bottom-scinblock.width=1 cm **# NEUDET CHAMBER** # in Y axis # global X size bottom-scinblock.length=4 cm chamber.width = 1.2 m# in Z axis # global Y size bottom-scinblock.thickness=1 m chamber.length = 1.2 m# material of capturer layer on the scintilla#globafacoize # available materials: Gadolimium Cadmiummber.thickness = 1.2 m bottom-scinblock.n-capt.material=Cadmium # thickness of capturer layer on the X surface bottom-scinblock.n-capt.x-thickness = 150 micrometer # thickness of capturer layer on the Y surface bottom-scinblock.n-capt.y-thickness = 300 micrometer

XY-view

SC

Layer of N-capturer (Gd,Cd,...)

geometry of neutrino detector # SCINTILLATOR BLOCKS # in X axis

bottom-scinblock.number-of-columns=100 # in Y axis

Cottom-scipbleck unbrief-rews=25

bottom-scinblock.width=1 cm# NEUD# in Y axis# globalbottom-scinblock.length=4 cm# global# in Z axis# global

NEUDET CHAMBER
global X size
chamber.width = 1.2 m
global Y size
chamber.length = 1.2 m

bottom-scinblock.thickness=1 m chamber.length = 1.2 m # material of capturer layer on the scintill#toglobafacsize # available materials: Gadolimium Cadmiuhamber.thickness = 1.2 n bottom-scinblock.n-capt.material=Cadmium # thickness of capturer layer on the X surface bottom-scinblock.n-capt.x-thickness = 150 micrometer

thickness of capturer layer on the Y surface bottom-scinblock.n-capt.y-thickness = 300 micrometer

Wednesday, February 9, 2011

XY-view

XY-view

SC

Laver of **N-capturer** (Gd,Cd,...)

geometry of neutrino detector **# SCINTILLATOR BLOCKS** # in X axis

bottom-scinblock.number-of-columns=100 # in Y axis

Simulations bottom-scinblock.width=1 cm

in Y axis

NEUDET CHAMBER # global X size peris tests bills size

bottom-scinblock.thickness=1 m chamber.length = 1.2 m# material of capturer layer on the scintillated shafac size # available materials: Gadolimium Cadmiummber.thickness = 1.2 m bottom-scinblock.n-capt.material=Cadmium # thickness of capturer layer on the X surface bottom-scinblock.n-capt.x-thickness = 150 micrometer

thickness of capturer layer on the Y surface bottom-scinblock.n-capt.y-thickness = 300 micrometer

Wednesday, February 9, 2011

XY-view

XY-view

SC

Layer of N-capturer (Gd,Cd,...) 106

geometry of neutrino detector **# SCINTILLATOR BLOCKS** # in X axis bottom-scinblock.number-of-columns=100 # in Y axis Simulations bottom-scinblock.width=1 cm **# NEUDET CHAMBER** # in Y axis # global X size persimental testsize bottom-scinblock.thickness=1 m chamber.length = 1.2 m# material of capturer layer on the scintillated shafac size vailable muterials: Gadolimium Cadminhamber.thickness = 1.2 n i bock.n-capt.material=Cadmium # thickness of capturer layer on the X surface bottom-scinblock.n-capt.x-thickness = 150 micrometer # thickness of capturer layer on the Y surface bottom-scinblock.n-capt.y-thickness = 300 micrometer

Wednesday, February 9, 2011

XY-view

Blind end of each WLS-fiber is coated (chemically) with light reflector

Modular structure of the detector

A number of strips are combined into intercrossing X- and Ymodules.

Prototype: 2 parallel modules (no Gd-coating)

Light collection

Light collection One PMT per Module (25-50 strips):

Light collection One PMT per Module (25-50 strips):

measure total energy of the photon burst

Light collection • One PMT per Module (25-50 strips): measure total energy of the photon burst produce "hard trigger"

Light collection • One PMT per Module (25-50 strips): measure total energy of the photon burst produce "hard trigger"

- Light collection • One PMT per Module (25-50 strips): measure total energy of the photon burst produce "hard trigger"
- Individual photo-diod (SiPM or MPPC) per each strip:

- Light collection • One PMT per Module (25-50 strips): measure total energy of the photon burst produce "hard trigger"
- Individual photo-diod (SiPM or MPPC) per each strip:
 - **<u>space</u>** distribution of the photon burst

- Light collection • One PMT per Module (25-50 strips): measure total energy of the photon burst produce "hard trigger"
- Individual photo-diod (SiPM or MPPC) per each strip:
 - **<u>space</u>** distribution of the photon burst

MPPC preamplifiers

MPPC preamplifiers

Flash ADC etc.

Monte Carlo simulations

100

ry deposited (n-capture in block [0.0]]

0.7

0.6

Example:

Space distribution of the energy deposit after the ¹⁵⁷Gd(n, ☑) reaction

End of 2009:

Start the real creation!

Mounting table (with Cu bottom shielding)

Mounting of the first section

The section #0 was dismounted and sent to Moscow (our ITEP-members of the team are playing with it now).

After some corrections we have started production of the sections #1, #2, etc.

The GEMMA-1 site: Reactor unit #2 of the "Kalinin" Nuclear Power Pla (400 km North from Mosco

The GEMMA-1 site: Reactor unit #2 of the "Kalinin" Nuclear Power Pla (400 km North from Mosco

Technological room just under reactor 14 m only! 2.7×10¹³ v/cm²/s The GEMMA-1 site: Reactor unit #2 of the "Kalinin" Nuclear Power Pla (400 km North from Mosco

Overburden (reactor, building, shielding, et ~70 m of W.E.

Technological room just under reactor 14 m only! 2.7×10¹³ v/cm²/s

GEMMA background conditions

- γ-rays were measured with Ge detector. The main sources are: ¹³⁷Cs, ⁶⁰Co, ¹³⁴Cs.
- Neutron background was measured with ³He counters, i.e., thermal neutrons were counted. Their flux at the facility site turned out to be <u>30</u> times lower than in the outside laboratory room.
- Charged component of the cosmic radiation (muons) was measured to be <u>5 times lower</u> than outside.

КАЭС

КАЭС

S

e

۵

O

۵

b

0

КАЭС 🤞

To be started on Sept. 2011

S

e

a

a

b

 $\begin{array}{c} 14 \rightarrow \!\! 10 \ m \\ 5 \cdot 10^{13} \, \mathrm{v/cm^2/s} \end{array}$

GEMMA-2

Lifting mechanism

Wednesday, February 9, 2011

Wednesday, February 9, 2011

Could we make the same for the DANSS

Wednesday, February 9, 2011

Important features

(resp. to conventional liquid scint.)

•<u>Handling is much safer</u> (not caustic, spontaneously igniting, volatile or solvent) \rightarrow no restrictions to move the detector very close to the reactor core \rightarrow higher neutrino flux \rightarrow **better sensitivity**.

•<u>High segmentation</u> (2500 cells) \rightarrow space information \rightarrow better IBDsignature \rightarrow stronger **BCKG suppression**.

•<u>PS</u> is not doped with Gd, but <u>interlayed</u> with it \rightarrow better **quality** and **stability** of the scintillator.

•<u>WLS-fibers</u> improve homogeneity of light-collection \rightarrow better **energy resolution**.

•Each cell in a module is looked through with both individual MPPC (high QE, but bad noise and range) and common PMT (lower QE, but better range and stability) \rightarrow coincidence mode and combination of **PMT and MPPC advantages**.

•<u>Sectional structure</u> \rightarrow possibility of "partial" operation, renewal and upgrade.

•Use of <u>lifting mechanism</u> \rightarrow measurements at **different distance** \rightarrow more **reliable data interpretation**.

• Sensitive volume: 1 m³

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m)

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m)

or 10 sections (1m × 1m × 0.1m)

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m)

or 10 sections (1m × 1m × 0.1m) of (5**X** + 5**Y**) modules = 2500 scint. strips { 1 module = 5 × 10 = 50 strips }

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m) or 10 sections (1m × 1m × 0.1m) of (5X + 5Y) modules = 2500 scint. strips
 - { 1 module = 5 × 10 = 50 strips }
- IBD detection efficiency: 74%

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m) or 10 sections (1m × 1m × 0.1m) of (5X + 5Y) modules = 2500 scint. strips { 1 module = 5 × 10 = 50 strips }
- IBD detection efficiency: 74%
- Count rate: 9200 IBD-events per day

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m) or 10 sections (1m × 1m × 0.1m) of (5X + 5Y) modules = 2500 scint. strips { 1 module = 5 × 10 = 50 strips }
- IBD detection efficiency: 74%
- Count rate: 9200 IBD-events per day
- Background: 40-50 events per day

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m) or 10 sections (1m × 1m × 0.1m) of (5X + 5Y) modules = 2500 scint. strips { 1 module = 5 × 10 = 50 strips }
- IBD detection efficiency: 74%
- Count rate: 9200 IBD-events per day
- Background: 40-50 events per day
- Due date: section №0 Feb 2010

- Sensitive volume: 1 m³
- Composition: 5 sections (1m × 1m × 0.2m) or 10 sections (1m × 1m × 0.1m) of (5X + 5Y) modules = 2500 scint. strips { 1 module = 5 × 10 = 50 strips }
- IBD detection efficiency: 74%
- Count rate: 9200 IBD-events per day
- Background: 40-50 events per day
- Due date: section №0 *Feb 2010* sections №1-3 *2011* №4-5 *2012*