Sterile Neutrinos and Short-Baseline Oscillations Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it

Workshop on Sterile Neutrinos and the Reactor Antineutrino Anomaly T.U.M, Garching, 8 February 2011

Collaboration with Marco Laveder (Padova University)

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -1/40

Standard Model

- Neutrinos are the only massless fermions
- Neutrinos are the only fermions with only left-handed component ν_L

Extension of the SM: Massive Neutrinos

- Simplest extension: introduce right-handed component ν_R
- Neutrinos become massive
- Dirac mass $m_D \overline{\nu_R} \nu_L$ + Majorana mass $m_M \overline{\nu_R^c} \nu_R$
- It is likely that right-handed neutrinos are connected with new physics beyond the Standard Model

Sterile Neutrinos

• Light anti- ν_R are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_s$ (left-handed)

- Sterile means no standard model interactions
- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos
 - Indirect evidence through combined fit of data
- Extremely interesting and powerful window on new physics beyond the Standard Model

How many Sterile Neutrinos?

 $e^+e^-
ightarrow Z
ightarrow
u ar{
u} \Rightarrow
u_e
u_\mu
u_ au$ 3 light active flavor neutrinos

mixing
$$\Rightarrow \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{kL}$$
 $\alpha = e, \mu, \tau$ $N \ge 3$
no upper limit!

Mass Basis: ν_1 ν_2 ν_3 ν_4 ν_5 \cdots Flavor Basis: ν_e ν_μ ν_τ ν_{s_1} ν_{s_2} \cdots ACTIVESTERILE

Solar and Atmospheric Neutrino Oscillations

Two scales of $\Delta m^2 \iff$ Three-Neutrino Mixing $\Delta m^2_{SOL} = \Delta m^2_{21} \simeq 7.6 \times 10^{-5} \text{ eV}^2$ $\Delta m^2_{ATM} \simeq |\Delta m^2_{31}| \simeq |\Delta m^2_{32}| \simeq 2.4 \times 10^{-3} \text{ eV}^2$

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -5/40

LSND

[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m}$

Beam Excess

 $20 \,\mathrm{MeV} \le E \le 200 \,\mathrm{MeV}$

 $\Delta m^2_{\text{LSND}} \gtrsim 0.2 \, \text{eV}^2 \quad (\gg \Delta m^2_{\text{ATM}} \gg \Delta m^2_{\text{SOL}})$

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -6/40

- ► New Short-BaseLine Oscillations: $\frac{L}{E} \lesssim 1 \frac{m}{MeV} \implies \Delta m_{SBL}^2 \gtrsim 1 eV^2$
- Necessary introduction of at least one new massive neutrino: $4-\nu$ Mixing

Mass Basis: $\nu_1 \quad \nu_2 \quad \nu_3 \quad \nu_4$ Flavor Basis: $\nu_e \quad \nu_\mu \quad \nu_\tau \quad \nu_s$ $\Delta m_{SBL}^2 = \Delta m_{41}^2$

• CP violation in SBL: at least 5- ν Mixing

 $\begin{array}{rcl} \text{Mass Basis: } \nu_1 & \nu_2 & \nu_3 & \nu_4 & \nu_5 \\ \\ \text{Flavor Basis: } \nu_e & \nu_\mu & \nu_\tau & \nu_{s1} & \nu_{s2} \\ \\ \Delta m_{\text{SBL1}}^2 = \Delta m_{41}^2 & < & \Delta m_{\text{SBL2}}^2 = \Delta m_{51}^2 \end{array}$

C. Giunti – ν_s and SBL Oscillations – 8 Feb 2011 – 7/40

Cosmology

Four-Neutrino Schemes: 2+2 and 3+1

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -9/40

2+2 Four-Neutrino Schemes

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -10/40

2+2 Schemes are strongly disfavored by solar and atmospheric data

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

$$\eta_s = |U_{s1}|^2 + |U_{s2}|^2$$
 99% CL:
 $\begin{cases} \eta_s < 0.25 & (\text{solar} + \text{KamLAND}) \\ \eta_s > 0.75 & (\text{atmospheric} + \text{K2K}) \end{cases}$

3+1 Four-Neutrino Schemes

SBL Oscillation Probabilities in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right)$$

Perturbation of 3ν Mixing

$\bar{\nu}_e$ Disappearance

[CHOOZ, Eur. Phys. J. C27 (2003) 331, hep-ex/0301017]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -14/40

$u_{\mu} \text{ and } \bar{\nu}_{\mu} \text{ Disappearance}$

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4|U_{\mu4}|^2$$

• $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

► Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu} \implies$ strong limit on $\sin^2 2\vartheta_{e\mu}$ [Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411] [Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247, arXiv:hep-ph/9607372]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -16/40

 $u_{\mu}
ightarrow
u_{e}$ and $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ in 3+1 Schemes

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -17/40

MiniBooNE Neutrinos

[PRL 98 (2007) 231801; PRL 102 (2009) 101802]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -18/40

MiniBooNE Antineutrinos

[PRL 103 (2009) 111801; PRL 105 (2010) 181801]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 541\,\mathrm{m}$

 $475 \,\mathrm{MeV} < E \leq 3 \,\mathrm{GeV}$

Agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal!

Similar L/E but different L and $E \Longrightarrow$ Oscillations!

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -19/40

PGoF = 0.24%

- ▶ 3+1 Four-Neutrino Schemes Strong tension between LSND + MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and MiniBooNE $\nu_{\mu} \rightarrow \nu_{e} \implies$ CP Violation?
- → 3+2 ⇒ CP Violation OK [Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004, hep-ph/0305255; Maltoni, Schwetz, PRD 76, 093005 (2007), arXiv:0705.0107; Karagiorgi et al, PRD 80 (2009) 073001, arXiv:0906.1997]
 → 3+1 + NSI ⇒ CP Violation OK [Akhmedov, Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -20/40

PGoF = 0.074% PGoF = 0.0048% Strong tension between LSND + MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\bar{\nu}_{e}$ (Bugey) + $\stackrel{(-)}{\nu}_{\mu}$ (CDHSW+ATM) disappearance limits + KARMEN $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ + and MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$

CPT Violation?

[Barger, Marfatia, Whisnant, PLB 576 (2003) 303]

[Giunti, Laveder, PRD 82 (2010) 093016, arXiv:1010.1395; arXiv:1012.0267]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -21/40

MINOS Hint of CPT Violation

LBL u_{μ} disappearance $E \sim 3 \,\text{GeV}$

Near Detector at 1.04 km

Far Detector at 734 km

[MINOS, Neutrino 2010, 14 June 2010]

C. Giunti – ν_s and SBL Oscillations – 8 Feb 2011 – 22/40

Phenomenological Approach: Consider $\bar{\nu}$'s Only

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -23/40

 $\chi^{2}_{min} = 29.8$ NdF = 26 GoF = 28% $sin^{2} 2\vartheta = 1.00$ $\Delta m^{2} = 0.052 \text{ eV}^{2}$

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 5.9$ NdF = 4 GoF = 21%

[Giunti, Laveder, PRD 82 (2010) 093016, arXiv:1010.1395]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -24/40

Conservation of Probability

$$\sum_{\alpha} P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{e}} = 1$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} + P_{\bar{\nu}_\mu \to \bar{\nu}_e} + P_{\bar{\nu}_\tau \to \bar{\nu}_e} + P_{\bar{\nu}_s \to \bar{\nu}_e} = 1$$

$$P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}} = 1 - P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{\tau} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{s} \rightarrow \bar{\nu}_{e}}$$

$$P_{ar{
u}_{\mu}
ightarrowar{
u}_{e}}\leq 1-P_{ar{
u}_{e}
ightarrowar{
u}_{e}}$$

Reactor $\bar{\nu}_e$ disappearance bound is unavoidable!

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -25/40

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ and $ar{
u}_{e}
ightarrow ar{
u}_{e}$

 $\chi^{2}_{min} = 81.4$ NdF = 82
GoF = 50%
sin² 2 ϑ = 0.014 Δm^{2} = 0.46 eV²

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 3.0$ NdF = 2 GoF = 22%

[Giunti, Laveder, PRD 82 (2010) 093016, arXiv:1010.1395]

Antineutrino Oscillations in 3+1 Schemes

 $\Delta m^2 = 0.45 \,\mathrm{eV}^2 \quad \sin^2 2\vartheta_{e\mu} = 0.013 \quad \sin^2 2\vartheta_{ee} = 0.017 \quad \sin^2 2\vartheta_{\mu\mu} = 0.65$ Prediction: large SBL $\bar{\nu}_{\mu}$ disappearance at $0.1 \lesssim \Delta m^2 \lesssim 1 \,\mathrm{eV}^2$

[Giunti, Laveder, arXiv:1012.0267]

C. Giunti – ν_s and SBL Oscillations – 8 Feb 2011 – 27/40

New Calculation of Reactor $\bar{\nu}_e$ Flux

- Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F. Yermia, Improved Predictions of Reactor Antineutrino Spectra, arXiv:1101.2663 (Thu, 13 Jan 2011)
 - "new reference antineutrino spectra for 235U, 239Pu and 241Pu"
 - "the normalization is shifted by about +3% on average"

. . .

- G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, A. Letourneau, The Reactor Antineutrino Anomaly, arXiv:1101.2755 (Fri, 14 Jan 2011)
 - "synthesis of published experiments at reactor-detector distances < 100 m leads to a ratio of observed event rate to predicted rate of 0.979 (0.029)"
 - "this ratio shifts to 0.937 (0.027), leading to a deviation from unity at 98.4% C.L. which we call the reactor antineutrino anomaly"
- ► New reactor neutrino flux has several implications: fit of solar and KamLAND data, determination of ϑ₁₃, short-baseline ν
 _e disappearance,

Standard Reactor $\bar{\nu}_e$ Fluxes

New Reactor $\bar{\nu}_e$ Fluxes

 New reactor neutrino flux evaluation decreases the tension between LSND + MiniBooNE and disappearance limits

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -29/40

Standard Reactor $\bar{\nu}_e$ Fluxes

New Reactor $\bar{\nu}_e$ Fluxes

► Strong tension between LSND + MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\bar{\nu}_{e}$ (Bugey) + $\stackrel{(-)}{\nu}_{\mu}$ (CDHSW+ATM) disappearance limits + KARMEN $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ + and MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ remains C. Giunti - ν_{s} and SBL Oscillations - 8 Feb 2011 - 30/40

Gallium Anomaly

Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar) $\nu_{\rm o} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-}$ Detection Process: $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}Ar \rightarrow {}^{37}Cl + \nu_e$ ν_{e} Sources: ⁵¹Cr ³⁷Ar E [keV] 427 811 747 752 432 813 0.8163 0.0849 0.0895 B.R. 0.0093 0.902 0.098 51Cr (27.7 days) 427 keV v (9.0%) ³⁷Ar (35.04 days) 432 keV v (0.9%) 813 keV v (9.8%) 747 keV v (81.6%) 811 keV v (90.2%) 752 keV v (8.5%) 37Cl (stable) 320 keV y [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041] 51 V [SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -31/40

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

$$\textit{R}_{Ga} = 0.86 \pm 0.05$$

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -32/40

► Deficit could be due to overestimate of

$$\sigma(
u_e + {}^{71} ext{Ga} o {}^{71} ext{Ge} + e^-)$$

Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ related to measured $\sigma(e^- + {}^{71}\text{Ge} \rightarrow {}^{71}\text{Ga} + \nu_e)$:

$$\sigma_{ ext{G.S.}}(^{51} ext{Cr}) = 55.3 imes 10^{-46} ext{ cm}^2 \left(1 \pm 0.004
ight)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{G.S.}}\right)$

Contribution of Excited States only 5%!

C. Giunti – ν_s and SBL Oscillations – 8 Feb 2011 – 33/40

Bahcall:

[Bahcall, PRC 56 (1997) 3391, hep-ph/9710491]

from $p + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + n$ measurements [Krofcheck et al., PRL 55 (1985) 1051]

$$\frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} < 0.056 \Rightarrow \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} = \frac{0.056}{2} \qquad \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0.146$$

$$3\sigma \text{ lower limit: } \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} = \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0$$

$$3\sigma \text{ upper limit: } \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} < 0.056 \times 2 \qquad \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0.146 \times 2$$

$$\sigma(^{51}\text{Cr}) = 58.1 \times 10^{-46} \text{ cm}^2 \left(1^{+0.036}_{-0.028}\right)_{1\sigma} \implies \qquad R_{Ga} = 0.86 \pm 0.05$$

Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011] "a sophisticated shell model calculation is performed ... for the transition to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements."

$$\sigma(^{51}\text{Cr}) = 63.9 \times 10^{-46} \text{ cm}^2 (1 \pm 0.106)_{1\sigma} \implies R_{\text{Ga}} = 0.76^{+0.09}_{-0.08}$$

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -34/40

[Giunti, Laveder, PRD 82 (2010) 053005, arXiv:1005.4599]

 $\Delta m^2_{
m SBL}\gtrsim 1\,{
m eV}^2$ is OK

 $\sin^2 2\vartheta_{\nu} > \sin^2 2\vartheta_{\bar{\nu}}$ CPT violation?

Parameter Goodness-Of-Fit: $\Delta \chi^2_{min} = 12.1$, NDF = 2, GoF = 0.2%

C. Giunti – ν_s and SBL Oscillations – 8 Feb 2011 – 35/40

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -36/40

Future

- ► New Gallium source experiments: ν_e disappearance [Gavrin et al, arXiv:1006.2103]
- CPT test: ν_e and $\bar{\nu}_e$ disappearance
- ► Beta-Beam experiments: [Antusch, Fernandez-Martinez, PLB 665 (2008) 190, arXiv:0804.2820] $N(A, Z) \rightarrow N(A, Z + 1) + e^- + \bar{\nu}_e$ (β^-) $N(A, Z) \rightarrow N(A, Z - 1) + e^+ + \nu_e$ (β^+)
- ► Neutrino Factory experiments: [Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

$$\mu^+
ightarrow ar{
u}_\mu + e^+ +
u_e$$
 $\mu^-
ightarrow
u_\mu + e^- + ar{
u}_e$

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 - 37/40

- New ν_e and ν
 _e radioactive source experiments with low-threshold neutrino elastic scattering detectors.
- ► LENS (Low Energy Neutrino Spectroscopy): [Agarwalla, Raghavan, arXiv:1011.4509] $\nu_e + {}^{115}$ In $\rightarrow {}^{115}$ Sn $+ e^- + 2\gamma$ $E_{th} = 0.1$ MeV $\bar{\nu}_e + p \rightarrow n + e^+$ $E_{th} = 1.8$ MeV

Borexino:

Conclusions

- Suggestive LSND and MiniBooNE agreement on $\bar{
 u}_{\mu}
 ightarrow \bar{
 u}_e$ signal
- Three experimental tensions:
 - LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$
 - ▶ LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs $\bar{\nu}_{e}$ and ν_{μ} disappearance limits
 - Gallium Anomaly (ν_e disappearance) vs Reactor ($\bar{\nu}_e$ disappearance)
- ▶ CPT-invariant 3+1 Four-Neutrino Mixing is strongly disfavored
- CPT-violating 3+1 Mixing \implies large SBL $\bar{\nu}_{\mu}$ disappearance
- ▶ 3+2 Five-Neutrino Mixing can explain the CP-violating tension between MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- Work in Progress: global 3+2 fit of SBL data, study of implications of new reactor neutrino flux evaluation, explanation of LSND and MiniBooNE + Gallium Anomaly.
- New short-baseline neutrino oscillation experiments are needed!

C. Giunti $-\nu_s$ and SBL Oscillations -8 Feb 2011 -40/40