

STR-361: Focused Workshop on Antineutrino Detection for Safeguards Applications, IAEA, Vienna, Austria, February 2009

Focused Workshop on Antineutrino Detection for Safeguards Applications

28-30 October 2008 IAEA Headquarters, Vienna

Recommendation 1

Because antineutrino detectors uniquely offer the prospect of monitoring bulk process reactor systems that can't be handled by current item accountancy SG regimes, we recommend that the IAEA to consider this approach in the current R&D program for safeguarding bulk-process reactors.

Recommendation 2

The IAEAs hould also consider antineutrino monitoring in Safeguards by Design approaches for power and fissile inventory monitoring of new and next generation reactors.

Recommendation 3

Working through the member state support programs, there should be further interaction between IAEA and the research community, including regular participation of IAEA safeguards departmental staff into international meetings such as the AAP.

Recommendation 4

The Expert group invites the IAEAs afeguards departmental staff to visit our currently deployed and planned neutrino detection installations for SG. Such visits will provide insight to the IAEA on the practical aspects of deployment, and will give the community much needed feedback on safeguards relevance and future directions.

Recommendation 5

We recommend that IAEA work with experts to consider future reactor designs using simulation codes for reactor evolution and detector response that already exist.

- Thierry Lasserre -

- IAEA Detector Design Guidelines:
 - "Small" \rightarrow 3 m x 3 m x 2,5 m maximum
 - Do not induce additional safety risk to the power plant
 - Remote & Easy Operation by Inspectors not trained as neutrino physicists
 - Reliable for remote operations
 - Not portable but 'Movable' to a certain extent
- Main Challenges of Nucifer for integration into safeguard regime:
 - Effort to simplify the state-of-the-art design and run close to surface while keeping detector performances
 <u>Attempt: 50% detection efficiency (5 times improvement w/r SANDS)</u>
 - Proceed to the 'industrialization' of neutrino science
 <u>Using the state-of-the art known technology (Double Chooz synergy)</u>

CEC) 4

Photodetection system

Integration in an ISO 7 clean room

 Central pipe hole for calibration

8" PMTs & magnetic shield (mu-metal)

 80l mineral oil pool (optical coupling & shielding)

250 mm thick acrylics vessel (radiopure, clean, highly transparent, non fluorescent)

Photodetection system

Bottom view

Rehabilitated underground lab from dismantled accelerator. Prototype vessel and non Gd-loaded LAB based scintillator for test.

Th. Lasserre

9

Target vessels

Concept: photodetection system hanged on the detector top lid

\rightarrow Prototype vessel

- -Double Chooz mockup re-used
- -1 cm thick steep
- -No radiopurity constraints
- -Reflective Paint inside

lid & photo-detection system fit both vessels.

Detector is tight and kept under nitrogen atmosphere (10 mbar overpressure)

→ Final Vessel -New stainless steel vessel -Double containment vessel with active leak detection

-Radiopurity screening (welds) -Material compatibility: Teflon coating

10

Target Scintillator

Specfications:

- Gd content = 0.5 ±0.05 % (mass)
- Material compatibility \rightarrow Always kept under nitrogen atmosphere
- Light output > 40% of Anthracene (Pulse shape discrimination capability)
- Max. emission: 400<λ<500 nm
- Attenuation length>4 m
- Refractive Index = 1.49 ± 0.2
- Stability in time > 1 year

\rightarrow Our choice:

	PROPERTIES	E L 331	
	Gadelinium content:	0.5% w/w	
	Specific Gravity:	0.90	0
	Light Output (% of Anthracene)	68%	5
	Wavelength of Maximum Emission	424 nm	4
Flion F1335	Bulk Light Attenuation Length:	>4 meters	
Lijen LJJJJJ	Refractive Index	1.50	1
0.5% Gd	Flash Point	44°C (111°F)	6
1000 dolivered	ATOMIC COMPOSITION		
Toon genvered	No. of H Atoms per cm ³	5.27 x 10 ²²	6
in Colony	No. of C Atoms per cm ³	4.00 x 10 ²²	3
in Saicay	H:C. Ratio	1.32	1
	No. of Electrons per cm ³	29.8 x 10 ²²	3

11

Muon Veto

 Interaction of cosmic rays with surrounding material induce fast neutrons (dominant bkg)

 30 boxes made of a 4 cm thick plastic scintillator + reflective coating + PMT

12

Passive Shielding optimized for the Osiris/ILL run

Neutrino signal can be faked by an accidental γ-n coincidence:

$$\begin{array}{c}
 & n \\
 & \gamma \\
 & \gamma \\
 & F_{\gamma} > 1 \text{ MeV} \\
\end{array}$$

A mechanical structure supports shielding all around the detector:

- 10 cm of lead to stop γ
- orts ctor:
- 15 cm of polyethylene to stop low E neutrons

Gamma Shieldings

- I0 cm thick lead wall (earthquake's proofed)
 - Lead & polyethylene supporting structure (earthquake's proofed)
 - 4π 10 cm thick lead shielding 3400 bricks –

14

Neutron Shielding

Calibration and Monitoring

Set of 7 diodes injecting light inside the detector for independent

• 2 diodes at the single photon level for monitoring G_{PMT}

• 5 larger intensity diodes for liquid stability and linearity

Light injection system and diffuser

monitoring of PMT gain and optical properties of the liquid:

Running continuously at low freq while data taking

 \rightarrow Allow for a clean background subtraction

Calibration pipe allowing insertion of radioactive sources along axial axis:

- ¹³⁷Cs, ²²Na, ⁶⁰Co, Am-Be: response to γ rays in the 0.7 4.4 MeV range
- Am-Be: neutrons tagged by 4 MeV γ
- $\hfill \ensuremath{\,^\circ}$ set neutron energy cut in analysis and determine ϵ_{det}

source holder

Nucífer

SS pipe

DAQ: data flow

4 types de triggers: physics, LEDs, random, Muon Veto

Prototype detector: linearity (Test Run with DC mockup vessel)

- Calibration pipe \rightarrow axial axis access
- γ range: 0.7 4.4 MeV
- tagged neutrons with AmBe → neutron energy cut for analysis and efficiency determination

Deployment Plan

Phase 1: OSIRIS – 2011/12

- Goal: Validation & full characterization of the Nucifer detector
- Challenge: Experiment 7 m away from a nuclear core (utltra high backgrounds)
- IAEA interest: Deployment very close to a core, inside a research reactor hall

Phase 2: ILL -2012/13 ?

- **Goal:** Measurement of a pure ²³⁵U fuel spectrum + Absolute detector calibration
- Challenge: weaker nuclear power, farther location, high neutron background
- IAEA interest: demonstration of our ability to change the detection site

Phase 3: Nuclear power station – 2013/14

- But : Precise measurement of thermal power and fuel evolution, in real conditions
- Challenge: Find a site! IAIA 'political support' could be a breakthrough
- IAEA interest: deployment at a private operator site.

Fundamental research interest: testing the Reactor Antineutrino Anomaly (especially to shape distortion close to Osiris/ILL compact cores)

Nucifer @ Saclay-Osiris

Site available at 7 m from the core

- Project supported by OSIRIS/DEN & CEA-Saclay
- 15 mwe overburden
- reactor induced γ rays implies
- ightarrowadditional 10 cm lead shielding wall

0	
Concrete	Pool
Rock	

P _{th} (MW)	70
Fresh fuel	U ₃ Si ₂ Al plates
Enrichment (% of ²³⁵ U)	20
Fuel replacement	1/7 th every 20d
Core dimensions (cm)	57 x 57 x 60
Distance from core center (m)	7
v _e flux at det. center (cm ⁻² .s ⁻¹)	2.3 10 ¹²
v _e int/day in Nucifer (0.856 m³)	1380
muon flux attenuation	2.7

P.Durande-Ayme @ TRTR-IGORR joint meeting 2005

• Signal:

- 850 liters of EJ335 LS. Challenge : 40% detection efficiency
- Expected #events per day \approx 730 \times 70 MW \times 0.85 m³ \times 0.4 eff. / (1/7)² = 700/day
- Accidental backgrounds
 - Campaign of measurements → high gamma flux (MHz...) Also at high energy (> 3MeV) through neutron capture on reactor metallic structure
 - Expected signal to noise ratio : about 1 (add a 10 cm lead shield wall at Osiris)

Fast neutrons (overburden: 10 mwe only)

Expected signal to noise ratio estimate : about 0.25 (before any PSD rejection)

21

Nucifer @Osiris: Integration

22

The nuclear core compactness

Testing the reactor antineutrino anomaly:

- Rate analysis \rightarrow an additional results at very short distance, with a few % precision
- Shape analysis \rightarrow appealing test of the sterile neutrino hypothesis

Nucifer hunt for sterile neutrinos

- Folding the Nucifer Geant 4 Monte Carlo detector response
 - Energy resolution from Geant4 simulation (not fully tuned yet)
 - Statistical errorfor 6 & 12 months of data at Osiris

Nucifer @ Grenoble-ILL

- Site available at 9-11 m from the core @ Room B42, old ILL exp.
 - First positive meeting with the directors in 2009
- More favourable background (20 times smaller γ flux than the one measured at Osiris. Neutron hot spot localized around aperture in the wall should be easy to shield.

P _{th} (MW)	57
Fresh fuel	UAI plates
Enrichment (% of ²³⁵ U)	93
Fuel replacement	Total after 50 days
Core dimensions (cm)	80 (f) x 28 (H)
Distance from core center (m)	9
v _e flux at det. center (cm ⁻² .s ⁻¹)	8.4 10 ¹¹
v _e int/day	>500
muon flux attenuation	2-3

н.

Conclusion

- NUCIFER could provide unattended monitoring and add quantitative measurements to the reactor safeguards toolbox:
 - P_{th} monitoring & inter-calibration of reactors
 - Sensitivity to 239 Pu removal ≤ 100 kg @ 25m from REP900
- A new perspective: sterile neutrino search
 - Test the reactor antineutrino anomaly
 - Shape distortion expected for $\Delta m^2 \approx \text{few eV}^2$
- First Nucifer module tested in spring 2010
- Data Taking at Osiris by June 2011
- Deployment plan
 - Osiris (2011-12), ILL ? (2012-13), Nuclear station (2013), ...

Expected Sensitivity

Statistical tests of differentiation of two different isotopic compositions

Assume constant power and x-days measurements before and after a Pu removal:

4 days: detect the removal 105 kg of Pu with 75% confidence level, 4% probability of false alert.

16 days: see 55 kg of Pu with 75% confidence level, 4% probability of false alert. High CL for 80 kg.

