

The prediction of reactor v spectrum is the dominant source of systematic error for single detector experiments

e⁻ spectrum — v spectrum

• Exact conversion requires complete knowledge from fission yield down to β -transition between parent ground (or isomeric)-state and daughter states

• Lot of relevant quantities: Z, A, End-points, J^{π} , nuclear matrix elements, branching ratios, fission yields, life time... but scarce data as E_0 increases \rightarrow integral electron spectra.

(e)

Anchor point of ILL electron data

Accurate measurements @ ILL in the 80's:

- High resolution magn. spectrometer
- Intense and pure thermal neutron spectrum from the core.
- Extensive use of reference internal conversion electron lines
 - \rightarrow Normalization
 - \rightarrow Shape via $\varepsilon_{det}(E)$

Unique reference to be met by any other measurement or calculation

Total electron spectra from the β -decays of ²³⁵U, ²³⁹Pu and ²⁴¹Pu fission products.

$\stackrel{\text{cest}}{=}$ ILL data: conversion to v spectra

Lost info of single β -branches \rightarrow fit e⁻ (50 keV bins) spectrum with a sum of 30 effective branches

8/02/11

MURE evolution code: core composition and off equilibrium effects (Subatech Nantes)

$$S_k(E) = \sum_{fp=1}^{N_{fp}} \mathcal{A}_{fp}(T) \times S_{fp}(E)$$

Full simulation of reactor core
→ absolute prediction of isotopes inventory.

• Relative off-equilibrium effect: close to beta-inverse threshold, a significant fraction of the v spectrum takes weeks to reach equilibrium

 \rightarrow Sizeable correction in the v oscillation range that depends on the exact chronology of ILL data taking.

Relative change of ν spectrum w.r.t. infinite irradiation time

^{cea} ²³⁸U spectrum

Comparison with Vogel's calculations, Phys. Rev. C24, 1543 (1981)

Improved conversion

0.1 (preiction - ILL ref) / ILL ref 235₁ 0.08 • ~+3% normalization shift with respect to 0.06 ILL converted v spectrum +3% 0.04 • Similar result for all isotopes. 0.02 0 -0.02^{LL}2 3 4 5 6 7 8 v kinetic energy (MeV)

Origin of the 3% shift

Stack of quadratic sum of ²³⁸U errors

²³⁵U bin-to-bin correlation matrix (25x25 bins, 2-8 MeV)

- More refined treatment of normalization error (impact on global fit of reactor experiments).
- Exploit ILL e⁻ data in 50 keV bins (reduce conversion error)
- Better estimate of A_{C,W} corrections and associated error?
- Details on chronology of ILL measurement for more accurate off-equilibrium effects.

Bias of β -decay scheme deduced from (e⁻, γ) coincidence:

- Underestimation of the low E part of the spectrum
- Overestimation of the high E part
- Missed $\boldsymbol{\gamma}$ are attributed to GS transition.

Solution is Total Absorption Gamma Spectrometers (detect total E of γ chain)

Z versus End-point energy

energie atomique · energies alternative

