The measurement of ϑ_{13} in Double Chooz

Martin Hofmann

Franz von Feilitzsch, Michael Franke, Marianne Göger-Neff, Nils Haag, Lothar Oberauer, Patrick Pfahler, Walter Potzel, Stefan Schönert, Hong-Hanh Trinh-Thi, and Vincenz Zimmer

> Physik Department E15 TU München

> > 03.05.2012

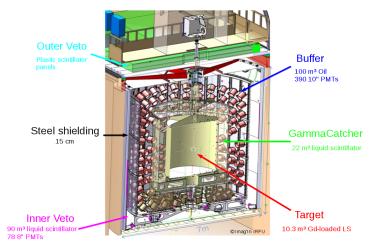
Contents

1 Setup of the Double Chooz Experiment

- The Double Chooz Detector
- Event Signature
- Backgrounds
- 2 Data Reduction and Analysis

3 Results on ϑ_{13}

- The Double Chooz Result
- Results of other experiments


The Double Chooz Detector Event Signature Backgrounds

The Double Chooz Detector: Detector Site


The Double Chooz Detector Event Signature Backgrounds

The Double Chooz Detector: Cross Section

The Double Chooz Detector Event Signature Backgrounds

The Double Chooz Detector

Martin Hofmann Double Chooz

The Double Chooz Detector Event Signature Backgrounds

Neutrino Detection: Inverse Beta Decay

Inverse Beta Decay

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Energy threshold: 1.8 MeV
- $\Rightarrow E_{\nu} = E_{vis} + 0.8 \,\text{MeV}$
 - Subsequent thermalization and capture of the neutron

Neutron Capture

$$n + Gd
ightarrow Gd^*
ightarrow Gd + \sum_i \gamma_i$$

\Rightarrow Clear event signature

The Double Chooz Detector Event Signature Backgrounds

Neutrino Detection: Possible backgrounds

Correlated background

- Fast neutrons, especially after spallation reactions of untagged muons
- β-n-emitting cosmogenic isotopes like ⁹Li or ⁸He produced by muons in the scintillator
- Stopped muons entering the detector through the chimney
- (α,n)-reactions in the liquid scintillator

Accidental background

 Accidental coincidences between a positron-like prompt event and a neutron-like delayed event, which are correlated in space and time

Trigger rate and event classes

Far detector trigger rate: ${\sim}120\,\text{Hz}$

- Instrumental light: PMT bases sporadically glowing (\sim 60 Hz)
- Cosmic muons: ~46 Hz
- Singles: mainly radioactivity (~10 Hz)
- Antineutrinos: $\sim 45 \, d^{-1}$

Used cuts for antineutrino search (I)

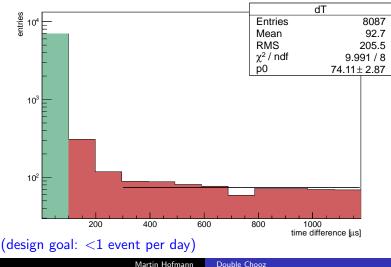
- Prompt signal:
 - Instrumental light: MQTQ < 0.09 && $RMS(T_s) < 40\,ns$
- Delayed signal:
 - Instrumental light: $MQTQ < 0.06 \ \&\& \ RMS(T_s) < 40 \ ns$

Used cuts for antineutrino search (I)

• Prompt signal:

- Instrumental light: MQTQ < 0.09 && RMS(T_s) $< 40\,\text{ns}$
- Muon cut: time difference to closest muon $> 1000\,\mu {\rm s}$
- Delayed signal:
 - Instrumental light: MQTQ < 0.06 && RMS(T_s) $< 40\,\text{ns}$
 - Muon cut: time difference to closest muon $> 1000 \, \mu s$

Used cuts for antineutrino search (II)


• Prompt signal:

- Instrumental light: MQTQ < 0.09 && RMS(T_s) $< 40\,\text{ns}$
- Muon cut: time difference to closest muon $> 1000\,\mu {\rm s}$
- Energy cut: $0.7\,\text{MeV} < \text{E} < 12.2\,\text{MeV}$
- Delayed signal:
 - Instrumental light: MQTQ < 0.06 && RMS(T_s) $< 40\,\text{ns}$
 - Muon cut: time difference to closest muon $> 1000 \, \mu s$
 - Energy cut: $6.0\,\text{MeV} < E < 12.0\,\text{MeV}$
 - Time cut: $2\,\mu s < \Delta t < 100\,\mu s$
 - **Multiplicity cut:** No additional valid trigger in a time window [-100 μ s, 400 μ s] around the prompt event.
 - No spatial cut

• $\bar{\nu}_{e}$ -like events: $(42.6 \pm 0.7) d^{-1}$

- $\bar{\nu}_e$ -like events: $(42.6 \pm 0.7) d^{-1}$
- Accidental coincidences: measured in-situ with offtime window $((0.33 \pm 0.03) d^{-1})$

Estimation of accidental background

Time difference for neutrino like coincidences

- $\bar{\nu}_e$ -like events: $(42.6 \pm 0.7) d^{-1}$
- Accidental coincidences: measured in-situ with offtime window $((0.33 \pm 0.03) d^{-1})$
- Cosmogenics: triple coincidence between showering muon (E>600 MeV) and IBD; distribution fitted with Exponential $((2.3 \pm 1.2) d^{-1})$

- $\bar{\nu}_e$ -like events: $(42.6 \pm 0.7) d^{-1}$
- Accidental coincidences: measured in-situ with offtime window $((0.33 \pm 0.03) d^{-1})$
- Cosmogenics: triple coincidence between showering muon (E>600 MeV) and IBD; distribution fitted with Exponential $((2.3 \pm 1.2) d^{-1})$
- Fast neutrons: Coincidence with 12.2 MeV < E(prompt) < 30 MeV; extrapolated to data region $((0.83 \pm 0.38) d^{-1})$

- $\bar{\nu}_e$ -like events: $(42.6 \pm 0.7) d^{-1}$
- Accidental coincidences: measured in-situ with offtime window $((0.33 \pm 0.03) d^{-1})$
- Cosmogenics: triple coincidence between showering muon (E>600 MeV) and IBD; distribution fitted with Exponential $((2.3 \pm 1.2) d^{-1})$
- Fast neutrons: Coincidence with 12.2 MeV < E(prompt) < 30 MeV; extrapolated to data region $((0.83 \pm 0.38) d^{-1})$
- Stopping muons and (α, n) -reactions: rate negligibly small

- $\bar{\nu}_e$ -like events: $(42.6 \pm 0.7) d^{-1}$
- Accidental coincidences: measured in-situ with offtime window $((0.33 \pm 0.03) d^{-1})$
- Cosmogenics: triple coincidence between showering muon (E>600 MeV) and IBD; distribution fitted with Exponential $((2.3 \pm 1.2) d^{-1})$
- Fast neutrons: Coincidence with 12.2 MeV < E(prompt) < 30 MeV; extrapolated to data region ((0.83 \pm 0.38) d⁻¹)
- Stopping muons and (α,n) -reactions: rate negligibly small
- ⇒ In total $(3.46 \pm 1.26) d^{-1}$ background events; confirmed with one day reactor off-off data (3 events found)

The Double Chooz Result Results of other experiments

The mixing angle ϑ_{13}

• Number of $\bar{\nu}_e$ events: 4121 \pm 64 (in 96.8 days live time)

The mixing angle ϑ_{13}

- Number of $\bar{\nu}_e$ events: 4121 \pm 64 (in 96.8 days live time)
- Expectation from Reactor:
 - Measured spectra of ²³⁵U, ²³⁹Pu and ²⁴¹Pu; calculated spectrum of ²³⁸U; Normalized to Bugey-4 data
 - \Rightarrow No oscillation hypothesis 4344 \pm 165

The mixing angle ϑ_{13}

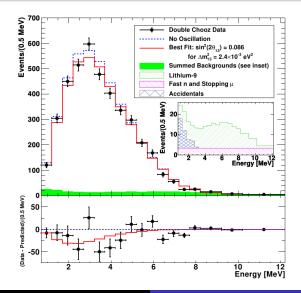
- Number of $\bar{\nu}_e$ events: 4121 \pm 64 (in 96.8 days live time)
- Expectation from Reactor:
 - Measured spectra of ²³⁵U, ²³⁹Pu and ²⁴¹Pu; calculated spectrum of ²³⁸U; Normalized to Bugey-4 data
 - \Rightarrow No oscillation hypothesis 4344 \pm 165
- Systematic error: 2.1% detector + 1.8% reactor
- ⇒ No oscillation hypothesis excluded at 94.6% (for $\Delta m^2 = 2.4 \cdot 10^{-3} \text{ eV}^2$)

The Double Chooz Result Results of other experiments

The mixing angle ϑ_{13}

Rate analysis

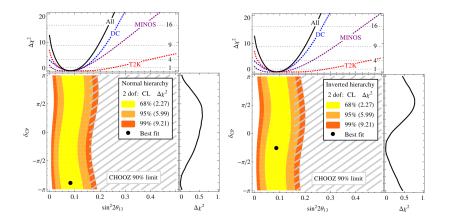
$$\sin^2(2\vartheta_{13}) = 0.104 \pm 0.030(stat) \pm 0.076(syst)$$


Rate + shape analysis

$$\sin^2(2\vartheta_{13}) = 0.086 \pm 0.041(stat) \pm 0.030(syst)$$

Y. Abe et al. PRL 108, 131801 (2012)

The Double Chooz Result Results of other experiments


Spectral analysis

Martin Hofmann Double Chooz

The Double Chooz Result Results of other experiments

Combined analysis

P.A.N. Machado et al. arXiv:1111.3330v2

The Double Chooz Result Results of other experiments

Daya Bay

The Double Chooz Result Results of other experiments

RENO

The Double Chooz Result Results of other experiments

Reactor neutrino experiments

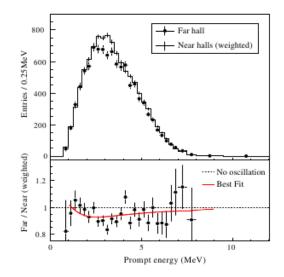
Daya Bay (rate only)

 $\sin^2(2\vartheta_{13}) = 0.092 \pm 0.016(stat) \pm 0.005(syst)$

F.P. An et al. PRL 108, 171803 (2012)

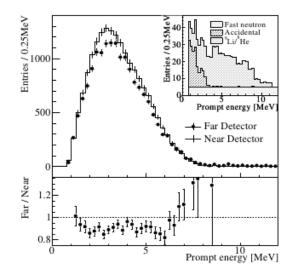
RENO (rate only)

 $\sin^2(2\vartheta_{13}) = 0.113 \pm 0.013(stat) \pm 0.019(syst)$

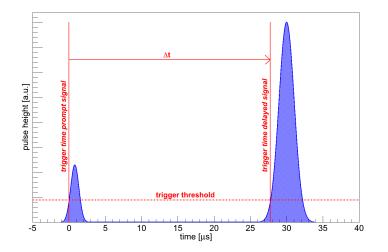

S.-B. Kim et al. arXiv:1204.0626v2

Backup Slides

The Double Chooz Result Results of other experiments


Daya Bay results

Martin Hofmann Double Chooz


The Double Chooz Result Results of other experiments

RENO results

The Double Chooz Result Results of other experiments

Neutrino Detection: Event signature

