Theory Predictions for Neutrino Mixing Parameters

Mu-Chun Chen University of California at Irvine

Joint Experimental-Theory Seminar on Dark Matter and Neutrinos TU-München, May 10, 2012

Neutrino Mass beyond the SM

- SM: effective low energy theory
- new physics effects suppressed by powers of new physics scale M

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{\mathcal{O}_{5D}}{M} + \frac{\mathcal{O}_{6D}}{M^2} + \dots$$
new physics effects

neutrino masses generated by dim-5 operators

 $\frac{\lambda_{ij}}{M}HHL_iL_i \Rightarrow m_{\nu} = \lambda_{ij}\frac{v^2}{M}$ λ_{ij} are dimensionless couplings;

• high M \Rightarrow small m_v

M is some high scale

- total lepton number and individual family lepton numbers broken
 - lepton mixing expected

• $\mu \rightarrow e \gamma$ (MEG @ PSI, ...); μ - e conversion (Mu2e @ Fermilab); $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma$ decays (SuperB, LHCb)

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: v_e , v_{μ} , v_{τ}

- mass eigenstates: v₁, v₂, v₃
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix
- $V_{e,R}^{\dagger} M_e V_{e,L} = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$ $V_{\nu,L}^T M_{\nu} V_{\nu,L} = \operatorname{diag}(m_1, m_2, m_3)$

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

$$U_{MNS} = V_{e,L}^{\dagger} V_{\nu,L}$$

Oscillation Mechanism

Simplified two-flavor analysis:

 $\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix} \mathbf{v}_{\mu} \underbrace{\sin\theta}_{\theta} \underbrace{\cos\theta}_{\theta} \underbrace{\cos\theta}_{\theta} \mathbf{v}_{e} \\ |\mathbf{v}_{e} \rangle = |\mathbf{v}_{1} \rangle \cos\theta + |\mathbf{v}_{2} \rangle \sin\theta \\ |\mathbf{v}_{\mu} \rangle = |\mathbf{v}_{2} \rangle \cos\theta - |\mathbf{v}_{1} \rangle \sin\theta$

• In vacuum: $|v_{\mu}\rangle$ evolves in time

 $|v_{\mu}(t)\rangle = |v_{2}\rangle e^{-im_{2}^{2}t/4p} \cos\theta - |v_{1}\rangle e^{-im_{1}^{2}t/4p} \sin\theta \quad \text{Oscillation length}$ $\lambda = \frac{2.5E_{\nu}}{\Delta m^{2}}$ $\Delta m^{2} \text{ must be non-zero to have neutrino oscillation!!} \quad \Delta m^{2} = m_{1}^{2} - m_{2}^{2}$

- transition probability from ν_{μ} to ν_{e}

$$P(v_{\mu} \rightarrow v_{e}) = \left\langle v_{e} \middle| v_{\mu}(t) \right\rangle$$
$$= \sin^{2} 2\theta \, \sin^{2}(\pi L/\lambda)$$

• Survival probability for v_{μ} $P(v_{\mu} \rightarrow v_{\mu})$ $= 1 - \sin^2 2\theta \sin^2(\pi L/\lambda)$

Mu-Chun Chen, UC Irvine

Vacuum oscillation: $E_v = 1 \text{ GeV}, \ \Delta m^2 = 10^{-3} \text{ eV}^2, \ \theta = \pi / 6$

Mu-Chun Chen, UC Irvine

05/10/2012 5

Leptonic Mixing Matrix

 Δm_a^2 , Δm_s^2

Three neutrino case:

• two mass differences: Δm_a^2 , Δm_s^2

• three mixing angles: $\begin{array}{c} \mathbf{o}, \ \mathbf{\phi}_{12}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \ \mathbf{o}, \ \mathbf{\phi}_{12}, \ \mathbf{o}, \ \mathbf{$

- three (one) CP phases for Majorana (Dirac) case: $\delta_{,\delta}\phi_{12}, \ \phi_{13}$
 - CP violation in neutrino oscillation sensitive to³Digate phase: δ
 - neutrinoless double beta decay sensitive to Majorana phases: Φ_{12} , Φ_{13}

€

Leptonic Mixing Matrix

• three mixing angles: $\begin{array}{c} o, \phi_{12}, \phi_{13} \in \\ \theta^{a}, \theta^{a}, C^{a}, 0 \end{array}$

- three CP phases: $\delta, \ \phi_{12}, \ \phi_{13}$
 - CP violation in neutrino oscillation sensitive to ⁵Digac phase: δ
 - neutrinoless double beta decay sensitive to Majorana phases: Φ_{12} , Φ_{13}

€

δ

Leptonic Mixing Matrix

• three mixing angles: $\begin{array}{c} \mathbf{o}, \ \mathbf{\phi}_{12}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \\ \mathbf{o}, \ \mathbf{\phi}_{12}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \\ \mathbf{o}, \ \mathbf{\phi}_{12}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \\ \mathbf{o}, \ \mathbf{\phi}_{13}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \\ \mathbf{\phi}, \ \mathbf{\phi}, \ \mathbf{\phi}_{13} \in \mathbf{o}, \\ \mathbf{\phi}, \ \mathbf{$

- three CP phases: $\delta, \ \phi_{12}, \ \phi_{13}$
 - CP violation in neutrino oscillation sensitive to ⁵Digac phase: δ
 - neutrinoless double beta decay sensitive to Majorana phases: Φ_{12} , Φ_{13}

€

δ

Where Do We Stand?

- Exciting Time in v Physics: recent hints of large θ_{13} from T2K, MINOS, Double Chooz, Daya Bay, RENO
- Latest 3 neutrino global analysis (including T2K and MINOS):

$P(\nu_a \to \nu_b) = \left \left\langle \nu_b \nu, t \right\rangle \right ^2 \simeq \sin^2$	$2\theta \sin^2\!\left(\frac{\Delta m^2}{4E}L\right)$
---	---

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028 (see also, Schwetz, Tortola, Valle, arXiv:1108.1376)

Parameter	$\delta m^2/10^{-5}~{\rm eV}^2$	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 \theta_{23}$	$\Delta m^2/10^{-3}~{\rm eV}^2$	
Best fit	7.58	0.306 (0.312)	0.021 (0.025)	0.42	2.35	
1σ range	7.32 - 7.80	0.291 - 0.324 (0.296 - 0.329)	0.013 - 0.028 (0.018 - 0.032)	0.39 - 0.50	2.26 - 2.47	
2σ range	7.16 - 7.99	0.275 - 0.342 (0.280 - 0.347)	0.008 - 0.036 (0.012 - 0.041)	0.36 - 0.60	2.17 - 2.57	
3σ range	6.99 - 8.18	$0.259 - 0.359 \\ (0.265 - 0.364)$	0.001 - 0.044 (0.005 - 0.050)	0.34 - 0.64	2.06 - 2.67	

Current Global Fit: $\theta_{13} \neq 0$ at 3σ

Caution!! Different global fit analyses assume different error correlations among experiments \Rightarrow different results

Where Do We Stand?

Global Fit Results at 1σ (3σ):

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028 (see also, Schwetz, Tortola, Valle, arXiv:1108.1376)

$$\begin{aligned} \theta_{12} &= 34.0^{\circ+1.0^{\circ}}_{0.9^{\circ}} {}^{(+2.9^{\circ})}_{(-2.7^{\circ})} , \quad \theta_{23} &= 46.1^{\circ+3.5^{\circ}}_{-4.0^{\circ}} {}^{(+7.0^{\circ})}_{(-7.5^{\circ})} , \quad \theta_{13} = \begin{cases} 6.5^{\circ+1.6^{\circ}}_{-1.4^{\circ}} {}^{(+4.2^{\circ})}_{-1.4^{\circ}} , \text{ NH} \\ 7.3^{\circ+1.7^{\circ}}_{-1.5^{\circ}} {}^{(+4.1^{\circ})}_{-5.5^{\circ}}) , & \text{IH} \end{cases} \\ \Delta m_{21}^{2} [10^{-5} \text{eV}^{2}] &= 7.59^{+0.20}_{-0.18} {}^{(+0.60)}_{-0.50} , \quad \Delta m_{31}^{2} [10^{-3} \text{eV}^{2}] = \begin{cases} 2.50^{+0.09}_{-0.16} {}^{(+0.26)}_{-0.36} , & \text{NH} \\ 2.40^{+0.08}_{-0.09} {}^{(+0.27)}_{-0.27} , & \text{IH} \end{cases} \end{aligned}$$

Combining Results from T2K, MINOS, Double CHOOZ, Daya Bay, RENO Experimets:

Machado, Minakata, Nunokawa, Zukanovich Funchal, arXiv:1111.3330v4 (last update: 04/28/2012)

```
\sin^2 2\theta_{13} = 0.096 \pm 0.013(\pm 0.040) at 1 \sigma (3 \sigma) CL
```

Where Do We Stand?

• The known knowns:

<u>What's Next?</u> Reactor Exp: Double Chooz, Daya Bay, Reno Long Baseline Exp: MINOS, NOvA, T2K, LBNE...

The known unknowns:

- Precisely how "large" is θ₁₃?
 (ν_e component of ν₃)
- $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$? (v_3 composition of v)
- neutrino mass hierarchy (Δm_{13}^2)?
- CP violation in neutrino oscillations?
- Majorana vs Dirac?

The unknown unknowns?

Theoretical Challenges

(i) Absolute mass scale: Why $m_v \ll m_{u,d,e}$?

- seesaw mechanism: most appealing scenario ⇒ Majorana
 - GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
- TeV scale new physics (extra dimension, $U(1)^{\prime}$, ...) \Rightarrow Dirac or Majorana
- (ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
 - seesaw doesn't explain entire mass matrix w/ 2 large, 1 small mixing angles
 - <u>neutrino anarchy</u>: no parametrically small number
 - near degenerate spectrum, large mixing
 - lack of predictivity
 - still alive and kicking! de Gouvea, Murayama, arXiv;1204.1249
 - family symmetry: there's a structure, expansion parameter (symmetry effect)
 - mixing result from dynamics of underlying symmetry
 - quark-lepton connection ↔ GUT : can be highly predictive
- In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly
 - sterile neutrinos: tension between fit to oscillation data and cosmology

 Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003)

Small Neutrino Mass: Seesaw Mechanism

• Mixture of light fields and heavy fields

$$\begin{pmatrix} \mathbf{v}_L & \mathbf{v}_R \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{m}_D \\ \mathbf{m}_D & \mathbf{M}_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R \end{pmatrix}$$

 v_R : sterile (singlet under ALL gauge groups in SM) v_Rv_R mass term allowed

• Diagonalize the mass matrix:

$$m_v \sim m_{light} \sim rac{m_D^2}{M_R} << m_D$$
 $m_{heavy} \sim M_R$

Yanagida, 1979; Gell-Mann, Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1981

• Smallness of neutrino masses suggest a high mass scale

Mu-Chun Chen, UC Irvine

Grand Unification

- Motivations:
 - Electromagnetic, weak, and strong forces have very different strengths
 - But their strengths become the same at 10¹⁶ GeV if there is supersymmetry
 - To obtain

$$\label{eq:mv} \begin{split} m_{\nu} &\sim (\Delta m^2_{atm})^{1/2}, \ m_D \sim m_{top} \\ M_R &\sim 10^{15} \ GeV \end{split}$$

coupling constants run!

Mu-Chun Chen, UC Irvine

05/10/2012 14

Origin of Flavor Mixing and Mass Hierarchy

- SM: 22 arbitrary parameters in Yukawa sector
- No fundamental origin found or suggested
- Reduce number of parameters
 - Grand Unification
 - seesaw scale ~ GUT scale
 - quarks and leptons unified
 - 1 coupling for entire multiplet
 - \Rightarrow intra-family relations (e.g. SO(10))

Up-type quarks \Leftrightarrow Dirac neutrinos

Down-type quarks \Leftrightarrow charged leptons

• Family Symmetry

⇒ inter-family relations (flavor structure)

Mu-Chun Chen, UC Irvine

Origin of Flavor Mixing and Mass Hierarchy

- Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)

u

d

- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - Δ27
 - Q4

Motivation: Tri-bimaximal (TBM) neutrino mixing

Discussion on Discrete gauge anomaly: Araki, Kobayashi, Kubo, Ramos-Sanchez, Ratz, Vaudrevange (2008)

Mu-Chun Chen, UC Irvine

TUM

GUT Symmetry

Tri-bimaximal Neutrino Mixing

• Neutrino Oscillation Parameters $P(\nu_a \rightarrow \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Latest Global Fit (3σ)

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028

$$\sin^2 \theta_{atm} = 0.42 \ (0.34 - 0.64) \ , \ \sin^2 \theta_{\odot} = 0.306 \ (0.259 - 0.359)$$

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

$$\sin^2 \theta_{\text{atm, TBM}} = 1/2$$
 $\sin^2 \theta_{\odot,\text{TBM}} = 1/3$
 $\sin \theta_{13,\text{TBM}} = 0.$

 $\sin^2 \theta_{13} = 0.021 \ (0.001 - 0.044)$

• Leading Order: TBM (from symmetry) + Corrections (dictated by symmetry)

Mu-Chun Chen, UC Irvine

Models for Tri-bimaximal Mixing

• Neutrino mass matrix

$$M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix} \longrightarrow \begin{array}{c} \sin^2 2\theta_{23} = 1 \\ \theta_{13} = 0 \end{array}$$

 μ-T Symmetry: Fukuyama, Nishiura; Mohapatra, Nussinov; Ma, Raidal; ...
 S₃: Kubo, Mondragon, Mondragon, Rodriguez-Jauregui; Araki, Kubo, Paschos; Mohapatra, Nasri, Yu; ...
 D₄: Ko, Kobayashi Park, Raby; Grimus, Lavoura; ...

solar mixing angle NOT fixed

• If $A + B = C + D \implies \tan^2 \theta_{12} = 1/2$ TBM pattern

• mass matrix M diagonalized by UTBM

$$U_{TBM}^T M U_{TBM} = diag(m_1, m_2, m_3)$$

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

A₄: Ma, Rajasekaran; Babu, Ma, Valle; Altarelli, Feruglio; He, Keum, Volkas; ... Z₃ x Z₇: Luhn, Nasri, Ramond; ... S₄: Lam; Ketan Patel; Watanabe et al; ... A₄ x S₃⁴: Babu, Gabriel

Mu-Chun Chen, UC Irvine

An Example: a SUSY SU(5) x T´ Model

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

- Double Tetrahedral Group T'
- Symmetries \Rightarrow 9 parameters in Yukawa sector \Rightarrow 22 physical observables
 - neutrino mixing angles from group theory (CG coefficients)
 - TBM: misalignment of symmetry breaking patterns
 - neutrino sector: T' \rightarrow G_{TST2}, charged lepton sector: T' \rightarrow G_T
 - GUT symmetry \Rightarrow deviation from TBM related to quark mixing θ_c
 - complex CG's of $T' \Rightarrow$ Novel Origin of CP Violation

M.-C.C, K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

- CP violation in both quark and lepton sectors entirely from group theory
- connection between leptogenesis and CPV in neutrino oscillation
- family symmetry: forbid Higgsino mediated proton decay (a la Babu-Barr)

Predictions: a SUSY SU(5) x T´ Model

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

• Charged Fermion Sector (7 parameters)

$$M_{u} = \begin{pmatrix} ig & \frac{1-i}{2}g & 0\\ \frac{1-i}{2}g & g + (1-\frac{i}{2})h & k\\ 0 & k & 1 \end{pmatrix} y_{t}v_{u} \\ V_{cb}$$

spinorial representations in charged fermion sector \Rightarrow complex CGs

 \Rightarrow CPV in quark and lepton sectors

Georgi-Jarlskog relations at GUT scale $\Rightarrow V_{d,L} \neq I$

$$m_d \simeq 3m_e \qquad m_\mu \simeq 3m_s$$

 $SU(5) \Rightarrow M_d = (M_e)^T$ \Rightarrow corrections to TBM related to θ_c

$$M_{d}, M_{e}^{T} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & (1,-3)c & 0 \\ b & b & 1 \end{pmatrix} y_{b}v_{d}\phi_{0}$$

$$V_{ub}$$

quark CP phase: $\gamma = 45.6$ degrees

$$\theta_c \simeq \left| \sqrt{m_d/m_s} - e^{i\alpha} \sqrt{m_u/m_c} \right| \sim \sqrt{m_d/m_s},$$

$$\theta_{12}^e \simeq \sqrt{\frac{m_e}{m_\mu}} \simeq \frac{1}{3} \sqrt{\frac{m_d}{m_s}} \sim \frac{1}{3} \theta_c$$

Numerical Results: Neutrino Sector

• MNS Matrix Note that these predictions do NOT depend on η_0 and ξ_0

Other Possibilities: Beyond TBM

• Current experimental precisions: TBM can be accidental

Albright, Rodejohann (2009); Abbas, Smirnov (2010)

Other possibilities: e.g. Dodeca Mixing Matrix from D₁₂ Symmetry

J. E. Kim, M.-S. Seo, (2010)

leading order:

$$\theta_{\rm c} = 15^{\circ}, \ \theta_{\rm sol} = 30^{\circ}, \ \theta_{\rm atm} = 45^{\circ}$$

$$V_{\rm PMNS} = U_l^{\dagger} U_{\nu} = \begin{pmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} & 0\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 $\theta_{c} + \theta_{sol} = 45^{\circ}$ (not from GUT symmetry)

breaking of D_{12} : $\theta_c = 15^\circ \rightarrow 13.4^\circ$

 $\boldsymbol{\theta}_{\text{sol}} = 30^{\circ} + O(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{13} = O(\boldsymbol{\epsilon})$

deviations correlated

Sum Rules: Quark-Lepton Complementarity

Quark Mixing

Lepton Mixing

mixing parameters	best fit	3 o range	mixing parameters	best fit	3 o range
θ^{q}_{23}	2.36°	2.25º - 2.48º	θ^{e}_{23}	42.8°	35.5° - 53.5°
θ^{q}_{12}	12.88°	12.75º - 13.01º	θ^{e}_{12}	34.4°	31.5° - 37.6°
θ ^q ₁₃	0.21°	0.17º - 0.25º	θ ^e ₁₃	5.6°	≤ 12.5°

• QLC-I $\theta_c + \theta_{sol} \cong 45^\circ$ Raidal, '04; Smirnov, Minakata, '04 (BM) $\theta^q_{23} + \theta^e_{23} \cong 45^\circ$

measuring leptonic mixing parameters to the precision of those in quark sector

- QLC-II $\tan^2 \theta_{sol} \approx \tan^2 \theta_{sol,TBM} + (\theta_c / 2) * \cos \delta_e$
 - (TBM) $\theta_{13} \approx \theta_{c} / 3\sqrt{2}$ Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa

• testing sum rules: a more robust way to distinguish different classes of models

Conclusions

- Kudos to experimentalists on recent exciting theta13 results!
- efforts at current and future experiments important
 - fundamental properties of neutrinos
 - underlying new physics for neutrino mass and mixing
- Example: a SUSY SU(5) x T´ Model
 - GUT + Family Symmetries: 9 parameters \Rightarrow 22 physical observables
 - group theoretical origin of mixing
 - CP violation from complex CG coefficients
 - QLC sum rules:

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta$$

$$\theta_{13} \simeq \theta_c/3\sqrt{2}$$

quark CP phase: $\gamma = 45.6$ degrees

 δ = 227 degrees

normal hierarchy predicted

Backuponclusions

 precise measurements of oscillation parameters important for pinning down underlying new physics

C.H. Albright (2009); updated from C. H. Albright, M.-C. C (2006)

- Theta13: Not merely measuring a number, but we are testing a paradigm
- Testing correlations: robust way to distinguish different classes of models
 - correlations among neutrino mixing parameters
 - sum rules among quark and lepton mixing parameters
 - correlations among other flavor violating processes

Backup Slides

Global Fit Including T2K/MINOS Results

05/10/2012 28

