Solar and atmospheric neutrinos as background for direct dark matter searches

Achim Gütlein

TU-München

Joined seminar on neutrinos and dark matter 31.05.2012

Outline

Direct Dark Matter Search

- 2 Neutrinos as background for direct dark matter searches
 - Coherent Neutrino Nucleus Scattering (CNNS)
 - Solar neutrinos
 - Solar neutrino count rates for different materials
 - Atmospheric neutrinos as background source
- 3 Limits for direct dark matter searches

4 Conclusions

Hints for dark matter

- Dynamics in galaxies and galaxy clusters
- Colliding galaxy clusters
- WMAP data

Achim Gütlein (TU-München)

Neutrino background

Direct dark matter search

- Dark matter candidate: WIMP (Weakly Interacting Massive Particle)
- Assumption: WIMP scatters coherently off target nucleus
- $\rightarrow\,$ Most direct dark matter search detectors can discriminate between electron (background) and nuclear recoils (signal)

Achim Gütlein (TU-München)

Neutrino background

WIMP model

- Spin independent interaction
- Elastic scattering
- WIMP scatters coherently off all nucleons
- Isothermal WIMP halo
- \Rightarrow Recoil spectrum of WIMPs:

$$\frac{dR(E_{rec})}{dE_{rec}} = \frac{c_1 N_A \rho_D}{2\sqrt{\pi}\mu_1^2} \sigma_{WN} |F(E_{rec})|^2 v_0 \frac{A^2}{E_0} e^{\frac{-c_2 E_{rec}}{E_0 r}}$$

 c_1 , c_2 : constants describing the annular modulation of the WIMP flux, N_A : Avogadro's number, ρ_D : local WIMP density, μ_1 : reduced mass for A=1, σ_{WN} : WIMP-nucleon cross section, v_0 : velocity of the earth relativ to the galaxy, A: mass number, E_0 : kinetic energy of the WIMPs, E_{rec} : recoil energy, $r = 4 \frac{M_D M_T}{(M_D + M_T)^2}$: kinematic factor, M_D : WIMP mass, M_T : mass of target nucleus

WIMP recoil spectrum

Helm form factor:

$$|F(q)|^2 = \left(\frac{3j_1(qR)}{qR}\right)^2 e^{-q^2s^2}$$

q: transferred momentum, *j*₁: spherical Bessel function, *R*: effectiv nuclear radius, *s*: nuclear skin thickness

Recoil spectra for different materials:

- WIMP-nucleon cross section: $10^{-44} \text{ cm}^2 \hat{=} 10^{-8} \text{ pb}$
- WIMP-mass: 60 GeV

CNNS - A neutral current process

- Neutral current process \Rightarrow CNNS independent of ν -flavor
- For low transferred momenta: Z⁰ wave length comparable to radius of nuclei
- $\Rightarrow~\nu$ scatters coherently off all nucleons

CNNS - Cross Section

$$\frac{d\sigma(E_{\nu}, E_{rec})}{dE_{rec}} = \frac{G_F^2}{8\pi} \left[Z \left(4\sin^2\theta_W - 1 \right) + N \right]^2 M \left(2 - \frac{E_{rec}M}{E_{\nu}^2} \right)$$
$$\sigma_{tot} = \frac{G_F^2}{4\pi} \left[Z \left(4\sin^2\theta_W - 1 \right) + N \right]^2 E_{\nu}^2$$

with neutrino energy E_{ν} , recoil energy E_{rec} , Fermi constant G_F , Weinberg angle θ_W , mass of traget nucleus M, proton number Z and neutron number N.

$$\sin^2 heta_W = 0.23 \Rightarrow \sigma_{tot} \sim rac{G_F^2}{4\pi} N^2 E_
u^2$$

But recoil energy $E_{rec} \propto \frac{1}{N+Z}$.

 \rightarrow Higher neutron number $N \rightarrow$ higher cross section σ_{tot} but also lower recoil energy E_{rec}

Solar neutrinos

- Neutrinos scattering coherently off a nucleus mimic a WIMP scattering event
- Strongest natural neutrino source: solar neutrinos
- Expected count rate for solar neutrinos is about 10⁴ per ton-year
- \rightarrow Solar neutrinos can be a background source for direct dark matter searches

Achim Gütlein (TU-München)

Count rates for argon

Count rates for germanium

Count rates for xenon

Count rates for sodium iodide

Count rates for calcium tungstate

Tungsten in calcium tungstate

- Counts for larger recoil energies (>2 keV) mainly due to scatterings off oxygen
- It is possible to discriminate between W recoils and Ca or O recoils
- \Rightarrow Solar neutrino events with recoil energies >2 keV can be rejected

Count rates for W in CaWO4 E_{th} [keV]02.084.1count rate per ton-year $2.7 \cdot 10^4$ 0.10.0

Energy thresholds for different target materials

Material	0.1 counts	0 counts
Ar	8.66 keV	18.8 keV
Ge	4.95 keV	10.3 keV
Xe	2.92 keV	5.7 keV
NaJ	11.55 keV	37.6 keV
CaWO ₄	16.39 keV	47.1 keV
W in $CaWO_4$	2.08 keV	4.1 keV

- Energy threshold for CaWO₄ is given without discrimination between W, Ca and O recoils
- Energy threshold for W in CaWO₄ is given with discrimination between W, Ca and O recoils applied

Recoil spectra of atmospheric neutrinos

Achim Gütlein (TU-München)

WIMP recoil spectrum

Recoil spectra for different materials:

- WIMP-nucleon cross section: $10^{-44} \text{ cm}^2 \hat{=} 10^{-8} \text{ pb}$
- WIMP-mass: 60 GeV

Exclusion plots for optimal WIMP search regions

Conclusions

- Solar neutrinos can be a background source for sensitivities below $10^{-46} \, \text{cm}^2 \hat{=} 10^{-10} \, \text{pb}$ for the WIMP-nucleon cross section
- However, solar neutrino background can be rejected by a proper choice of the WIMP search region
- $\bullet\,$ W and Xe are the best target materials for the direct dark matter search, if WIMP masses are $\gtrsim 10\,GeV$
- The discrimination between W, Ca and O recoils is very important for the use of CaWO₄ as target material
- Atmospheric neutrinos become a background source for the direct dark matter search for sensitivities below $10^{-48} \text{ cm}^2 = 10^{-12} \text{ pb}$