Recent Results of EXO-200 Wolfhart Feldmeier TU München 21 Jun 2012

Neutrino masses: What we know from other experiments

Neutrino oscillations...

- Measure Δm_{ij}^2
- Have shown that v have mass
- Have shown that flavor states ≠ mass eigenstates

Tritium decay...

- Measures $m_{\beta} \coloneqq \sqrt{\sum_{i} |U_{ei}|^2 |m_i|^2}$
- $m_{\beta} < 2.1 \text{ eV} (95\% \text{ CL})$

Cosmology...

- Constrains $\sum_i m_i$
- $\sum_{i} m_{i} < 0.5 \text{ eV}$

Neutrino masses: What Neutrinoless Double-β Decay (Ονββ) can tell us

- Measures $\left|m_{\beta\beta}\right|\coloneqq\left|\sum_{i}U_{ei}^{2}m_{i}\right|$
- What is the absolute mass scale? $m_i = ?$
- Normal or inverted hierarchy? Quasi-degenerate mass spectrum?
- Dirac- or Majorana-v?

Neutrino mass hierarchy: Current status

Neutrinoless Double-B Decay

Neutrinoless Double-B Decay

$$T_{\frac{1}{2}}^{0\nu^{-1}} = G^{0\nu} |M^{0\nu}|^2 |m_{\beta\beta}|^2$$
$$|m_{\beta\beta}| = |\sum_i U_{ei}^2 m_i|$$

Nuclear Matrix Elements (calculated)

Plot: V. Rodin, arXiv:0910.5866

The Detector (Principle)

E = 376 V/cm

Induction- and charge
 collection wire planes (Anode)
 measure the amount and
 position of charge

Large area Avalanche Photo Diodes (APDs) detect the scintillation light

Liquid ¹³⁶Xe as source - and detector material

The Detector

40 cm

Two almost identical halves reading ionization and 178 nm scintillation, each with:

- 38 U triplet wire channels (charge deposition)
- 38 V triplet wire channels, crossed at 60° (induction)
- 234 APDs (7 per channel)
- Wire pitch 3 mm (9 mm per channel)
- Wire planes 6 mm apart and 6 mm from APD plane

All signals digitized at 1 MS/s, $\pm 1024S$ around trigger

Calibration

Radon content in Xenon

²²²Rn content after initial fill

- Using the ²¹⁴Bi ²¹⁴Po coincidence (both ²²²Rn daughters) we can estimate the amount of ²²²Rn in the Lxe
- Alphas create high ionization density due to their short range \rightarrow high recombination rate \rightarrow increased light/charge ratio
- Long-term study shows a constant source of ²²²Rn dissolving in ^{enr}LXe: 360 ± 65 μBq (Fid. vol.)

Backgrounds and event topology

- Plot shows mean free path of γ and stopping distance of e
- Y-axis scale in mm for e and cm for γ
- Detector resolution on the order of ~1 mm
- γ usually scatter to multiple sites, while
- e have continuous energy loss within < 1mm \rightarrow single site event
- Single site and multiple site spectra

Combining ionization and scintillation energy

Properties of Xe cause increased ionization to be associated with decreased scintillation E. Conti et al. Phys. Rev. B 68 (2003) 054201

Combining ionization and scintillation energy

Use projection onto rotated axis to determine event energy: "Rotation" angle determined via optimization of energy resolution at ²²⁸Th photopeak (2615 keV)

Recent analysis overview

- Measurement period: Sep 22 2011 Apr 15 2012
- Low background run livetime: 120.7 days
- Active mass: 98.5 kg LXe (79.4 kg ¹³⁶LXe)
- Exposure: 32.5 kg.yr
- Total dead time from vetos: 8.6%
- Events required to be fully reconstructed in 3D (U-, V-position, APD signal found
 - Reconstruction efficiency (SS) for $\beta\beta0\nu$: 71%
- Energy resolution at Q value: 1.67%
 - Dominated by constant noise term (electronics noise)

Applied cuts

• Muon veto:

- 25 ms after muon veto panel hit (0.58% dead time)
- 60 s after muon track identified in TPC (5.0 % dead time)
- Time coincidence cut:
 - Removes any two events that occur within 1s (3.3% dead time)
 - Removes $\beta \alpha$ decay coincidences due to ²¹⁴Bi ²¹⁴Po (²²²Rn daughters)
- Energy spectrum "diagonal" cut
 - Removes events with incomplete charge collection (detector edges)
 - Removes α-events
- Fiducial volume cut
 - Removes events which have clusters outside fiducial volume

Low background spectrum

• Alphas create high ionization density due to their short range \rightarrow high recombination rate \rightarrow increased light/charge ratio

Fit to low background spectra

- Signal ($0V\beta\beta$, $2V\beta\beta$) and background PDFs generated by MC
- Convolved with (parameterized) resolution function
- Combined to perform Maximum Likelihood fit on data (simultaneously across MS and SS event populations)
- Systematics (MS/SS ratios, resolution, calibration, etc.) constrained by measurements

Low background fit

	ββ 2 ν
	ββ 0 ν (90% CL Limit)
	⁴⁰ K LXe Vessel
	⁵⁴ Mn LXe Vessel
	⁶⁰ Co LXe Vessel
	⁶⁵ Zn LXe Vessel
	²³² Th LXe Vessel
	²³⁸ U LXe Vessel
	¹³⁵ Xe Active LXe
	²²² Rn Active LXe
	²²² Rn Inactive LXe
	²¹⁴ Bi Cathode Surface
	²²² Rn Air Gap
•	Data
	Total

Low background fit

- ~22,000 2vββ events !
- Also populate MS spectrum, partly due to bremsstrahlung
- MC predicts that 82.5% of 2vββ are SS

	ββ 2 ν
	ββ 0 ν (90% CL Limit)
	⁴⁰ K LXe Vessel
	⁵⁴ Mn LXe Vessel
	⁶⁰ Co LXe Vessel
	⁶⁵ Zn LXe Vessel
	²³² Th LXe Vessel
	²³⁸ U LXe Vessel
	¹³⁵ Xe Active LXe
	²²² Rn Active LXe
	²²² Rn Inactive LXe
	²¹⁴ Bi Cathode Surface
	²²² Rn Air Gap
•	Data
	Total

Low background fit (zoomed)

No Ov-signal observed

Background counts in \pm 1,2 σ ROI

	Expected events from fit				
	±1 σ		±2 σ		
²²² Rn in cryostat air-gap	1.9	±0.2	2.9	±0.3	
²³⁸ U in LXe Vessel	0.9	±0.2	1.3	±0.3	
²³² Th in LXe Vessel	0.9	±0.1	2.9	±0.3	
²¹⁴ Bi on Cathode	0.2	±0.01	0.3	±0.02	
All Others	~0.2		~0.2		
Total	4.1	±0.3	7.5	±0.5	
Observed	1		Ę	5	
Background index b (kg ⁻¹ yr ⁻¹ keV ⁻¹)	1.5·10 ⁻³ ± 0.1		$1.4 \cdot 10^{-3} \pm 0.1$		

	ββ 2 ν
	ββ 0 ν (90% CL Limit)
	⁴⁰ K LXe Vessel
	⁵⁴ Mn LXe Vessel
	⁶⁰ Co LXe Vessel
	⁶⁵ Zn LXe Vessel
	²³² Th LXe Vessel
	²³⁸ U LXe Vessel
	¹³⁵ Xe Active LXe
	²²² Rn Active LXe
	²²² Rn Inactive LXe
	²¹⁴ Bi Cathode Surface
	²²² Rn Air Gap
•	Data
	Total

- EXO-200 background goal: 40 cnts/2y in ±2σ ROI, 140 kg LXe
- In this data, 120 days, 98.5 kg, this would be: 4.6 cnts
- Expected from the fit: 7.5
- Observed: 5
- Background within expectation

Limits on $T^{0v}_{1/2}$ and $|m_{\beta\beta}|$

$$T_{\frac{1}{2}}^{0\nu^{-1}} = G^{0\nu} |M^{0\nu}|^2 |m_{\beta\beta}|^2$$

From Profile Likelihood (90% CL):

$$T_{\frac{1}{2}}^{0\nu} > 1.6 \cdot 10^{25} \text{yr}$$

 $|m_{\beta\beta}| < 140 - 380 \text{ meV}$

arXiv:1205.5608 – Subm. to PRL

Limits on $T^{0\nu}_{1/2}$ and $|m_{\beta\beta}|$

From Profile Likelihood (90% CL):

$$T_{\frac{1}{2}}^{0\nu} > 1.6 \cdot 10^{25} \text{yr}$$

 $|m_{\beta\beta}| < 140 - 380 \text{ meV}$

arXiv:1205.5608 - Subm. to PRL

A. Gando et al. Phys. Rev. C 85 (2012) 045504
H.V. Klapdor-Kleingrothaus et.al. Eur. Phys. J.
A12 (2001) 147
H.V. Klapdor-Kleingrothaus and I.V. Krivosheina,
Mod. Phys. Lett., A21 (2006) 1547.

Summary

- EXO-200 is taking low background data
- Detector working well, we met our goals:
 - Energy resolution: 1.67% at $Q\beta\beta$
 - Background: 1.5 x 10⁻³ kg⁻¹ keV⁻¹ yr⁻¹
 1 (5) counts in 1σ (2σ) 0vββ ROI
- $T^{0v}_{1/2} > 1.6*10^{25} \text{ yr}$

- Improvements on σ and b in progress
- EXO-200 approved to run for 4 more years

Backup Slides

Systematics

%

12.34

9.32

0.93

0.11

0.04

0.04

0.04

 Error breakout: expected 90% CL limit given absolute knowledge (0 error) of a given parameter or set of parameters

Sensitivity

From estimated background, expect to quote a 90% CL upper limit on $T_{1/2}$:

- \geq 1.6 x 10²⁵ yr 6.5% of the time
- \geq 7 x 10²⁴ yr 50% of the time

Calibration source data/MC agreement

- Black dots: Data
- Blue line: MC

SS/MS fraction agreement within 8.5%
Overall rate agreement within 9.4%

Corrections applied to data

Electronegative impurity correction

- e losses via catching by electronegative impurities
 Loss rate related to drift time: exp(- tdrift/τe)
 Xe is purified by continuously recirculating through gas purifier
- Purity (= electron lifetime) clearly correlated to pump speed

Wire gain corrections

- Gains of wire channels measured with charge calibrations
- This is further corrected using the pair production peak (1593 keV) from ²²⁸Th 2615 keV γ depositions.
- Have also individually measured the electronic transfer function of each channel, which are used to reconstruction the charge signals

0

With all this and the excellent purity, the charge resolution improved from 4.5% to 3.4% at 2615 keV

Light yield correction

EXO-200 light response (Averaged over ϕ)

 Use full absorption peak of 2615 keV γ from ²⁰⁸Tl (²²⁸Th source) to map light response in TPC

