
MW – MZ correlation
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with loop contributions
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∆r : quantum correction
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complete at 2-loop order

1-loop examples

Loop ontributionsquantum orretions, of O(1%)

Relevane of quantum orretions

Order of magnitude� ��� : : : �� ln E2m2e��O(1)� [0:2% : : :6%℄�O(1) for E = 100GeVontain all details of the theory� top quarkW t
b W e�e���� Higgs bosonW H

W W e�e���� gauge-boson self-ouplingsW W
Z;  W e�e��� � �

) allow for indiret experimental testsof not diretly aessible quantities

Ansgar Denner 28 24. June 2003full structure of SM
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Z resonance
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• effective Z boson couplings with higher-order ∆gV,A

vf → gfV = vf +∆gfV , af → gfA = af +∆gfA

• effective ew mixing angle (for f = e):
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importance of two-loop calculations
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Global analysis within the SM
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before the top quark was discovered (< 1995):

indirect mass determination ⇒ mt = 178± 8+17
−20GeV
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today: mt = 173.2± 0.9GeV



The way to the Higgs boson

development of bounds from direct and indirect searches
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Global fit to the Higgs boson mass
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The direct search for the Higgs boson

Higgs production at LEP:

Searh for the Standard Model Higgs at LEP

Dominant prodution proess: e+e�! ZH

e�
e+

Z
HZ

Dominant deay proess: H ! b�b
b

�bH

Highest energy: ECM � 206 GeV

Exlusion limit, 95% C.L.:

MH > 114:4GeV :

excluded MH < 114GeV

Higgs production at the Tevatron:

H

t

t

t

H

W, Z

W, Z



Higgs production at the LHC

Higgs production modes

• Dominant Higgs production modes expected from the SM at m =125 GeV:

ggF VBF

ttH

VH

VBF

VH

ttH

Handbook of Higgs Cross sections,
arXiv:1101.0593, arXiv:1201.3084



Higgs boson decay channels

branching ratios BR(H → X) = Γ(H→X)
Γ(H→all)
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H → γ γ
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Higgs decays into 4 fermions

also below V V threshold with one or two V off-shell

a)
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H V
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H → ZZ → l+l− l+l−
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A Standard Model Higgs boson at the LHC?

)µSignal strength (
  -1  0 +1

Combined

 4l→ (*)
 ZZ→H 

γγ →H 

νlν l→ (*)
 WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s
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 = 125.5 GeVHm

 0.20± = 1.30 µ

ATLAS Preliminary

H mass ATLAS (GeV) H mass CMS (GeV)

125.5 ± 0.2 ± 0.6 125.7 ± 0.3 ± 0.3

Theory: σ(pp → H) · BR(H → X)



Landau pole

Higgs self coupling is scale dependent, λ(Q)

The triviality boundLet us have a look at the one{loop radiative orretions to the Higgs boson quarti oupling,taking into aount for the present moment only the ontributions of the Higgs boson itself.The Feynman diagrams for the tree{level and the one{loop orretions to the Higgs bosonself{oupling are depited in Fig. 1.17.� ��HH HH � � � �+ + +Figure 1.17: Typial Feynman diagrams for the tree{level and one{loop Higgs self{oupling.The variation of the quarti Higgs oupling with the energy sale Q is desribed by theRenormalization Group Equation (RGE) [127℄ddQ2 �(Q2) = 34�2 �2(Q2) + higher orders (1.171)The solution of this equation, hoosing the natural referene energy point to be the ele-troweak symmetry breaking sale, Q0 = v, reads at one{loop�(Q2) = �(v2) �1� 34�2 �(v2) logQ2v2 ��1 (1.172)The quarti ouplings varies logarithmially with the squared energy Q2. If the energy ismuh smaller than the eletroweak breaking sale, Q2 � v2, the quarti oupling beomesextremely small and eventually vanishes, �(Q2) � �(v2)=log(1) ! 0+. It is said that thetheory is trivial, i.e. non interating sine the oupling is zero [128℄.In the opposite limit, when the energy is muh higher that weak sale, Q2 � v2, thequarti oupling grows and eventually beomes in�nite, �(Q2) � �(v2)=(1 � 1) � 1. Thepoint, alled Landau pole, where the oupling beomes in�nite is at the energy�C = v exp�4�23� � = v exp�4�2v2M2H � (1.173)The general triviality argument [119, 129℄ states that the salar setor of the SM is a �4{theory, and for these theories to remain perturbative at all sales one needs to have a oupling� = 0 [whih in the SM, means that the Higgs boson is massless℄, thus rendering the theorytrivial, i.e. non{interating. However, one an view this argument in a di�erent way: onean use the RGE for the quarti Higgs self{oupling to establish the energy domain in whih65

variation with scale Q described by RGE

Q2 dλ

dQ2
= β(λ) =

3

4π2
λ2

solution:

λ(Q) =
λ(v)

1− 3
4π2λ(v) log

Q2

v2

with λ(v) =
M2

H

2v2

diverges at scale Q = ΛC (Landau pole)

ΛC = v exp

(

4π2v2

3M2
H

)

maximum Higgs mass by condition Λ > M



self-coupling diverges at

ΛC = v exp

(

4π2v2

3M2
H

)

maximum Higgs mass by condition ΛC > MH

⇒ MH < 800GeV



vacuum stability

top-quark Yukawa coupling gt ∼ mt contributes to the running Higgs
self coupling λ(Q) through top loop ∼ g4t

the SM is valid, i.e. the energy ut{o� �C below whih the self{oupling � remains �nite.In this ase, and as an be seen from the previous equation, if �C is large, the Higgs massshould be small to avoid the Landau pole; for instane for the value �C � 1016 GeV, oneneeds a rather light Higgs boson, MH <� 200 GeV. In turn, if the ut{o� �C is small, theHiggs boson mass an be rather large and for �C � 103 GeV for instane, the Higgs mass isallowed to be of the order of 1 TeV.In partiular, if the ut{o� is set at the Higgs boson mass itself, �C =MH , the require-ment that the quarti oupling remains �nite implies thatMH <� 700 GeV. But again, thereis a aveat in this argument: when � is too large, one annot use perturbation theory any-more and this onstraint is lost. However, from simulations of gauge theories on the lattie,where the non{perturbative e�ets are properly taken into aount, it turns out that oneobtains the rigorous bound MH < 640 GeV [130℄, whih is in a remarkable agreement withthe bound obtained by naively using perturbation theory.The stability boundIn the preeding disussion, only the ontribution of the Higgs boson itself has been inludedin the running of the quarti oupling �. This is justi�ed in the regime where � is ratherlarge. However, to be omplete, one needs to also inlude the ontributions from fermionsand gauge bosons in the running. Sine the Higgs boson ouplings are proportional to thepartile masses, only the ontribution of top quarks and massive gauge bosons need to beonsidered. Some generi Feynman diagrams for these additional ontributions are depitedin Fig. 1.18.The one{loop RGE for the quarti oupling, inluding the fermion and gauge bosonontributions, beomes [127℄d�dlogQ2 ' 116�2 �12�2 + 6��2t � 3�4t � 32�(3g22 + g21) + 316 �2g42 + (g22 + g21)2�� (1.174)where the top quark Yukawa oupling is given by �t = p2mt=v. The �rst e�et of thisextension is that for not too large � values, the additional ontributions will slightly alterthe triviality bounds. In partiular, the sale at whih the New Physis should appear willdepend on the preise value of the top quark mass.�� ��HH HHF �� ��VFigure 1.18: Diagrams for the one{loop ontributions of fermions and gauge bosons to �.66variation with scale Q described by RGE
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approximate solution:
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λ(Q) < 0 for Q > ΛC → vacuum not stable

high value of ΛC needs MH large enough



combined effects, RGE in two-loop order:

dλ

dt
=

1

16π2

(

12λ2 − 3 g4t + 6λ g2t + · · ·
)
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