Kern- und Teilchenphysik Teil 2

Prof. Dr. Lothar Oberauer gemeinsam mit
Prof. Dr. Wolfgang Hollik

Dies ist eine unkorrigierte Vorschau-Version

5. November 2008

Inhaltsverzeichnis

1	Tie	finelastische Streuung, Quarks	5				
	1.1	Angeregte Nukleozustände	5				
	1.2	Strukturfunktionen	$\overline{7}$				
	1.3	Impulsverteilung der Quarks					
	1.4	Tiefinelastische ν -Nukleonstreuung	10				
	1.5	Antiquarks im Nukleon	14				
2	Qua	antenchromodynamik	15				
	2.1	1 Tiefinelastische Streuung im Parton-Bild					
	2.2	Eichtheorien	19				
		2.2.1 Lagrange-Formalismus für Felder	19				
		2.2.2 QED als Eichtheorie $\ldots \ldots \ldots$	21				
		2.2.3 Nicht-Abelsche Eichtheorien	23				
	2.3	Formulierung der QCD	28				
	2.4	Scaling-Verletzung und Parton-Verteilung					
	2.5	Laufende Kopplung und asymptotische Freiheit	43				
		2.5.1 QED	43				
		2.5.2 QCD	46				
	2.6	QCD-Potentiale und Bindungszustände	48				
		2.6.1 QED	48				
		2.6.2 QCD	49				
		2.6.3 Quarkonia	55				
3	Colliderphysik						
	3.1	Quarkflavours, Farben, Gluonen, $W^{\pm}Z$	57				
		3.1.1 Leptonische Kanäle	58				
		3.1.2 Hadronische Kanäle	59				
		3.1.3 Zusammenfassung Quarks	63				
	3.2	Nichtresonante Erzeugung von Hadronen	63				
4	Glu	onen	65				
	4.1	QCD-Potential bei kleinen Abständen	65				
	4.2	QCD-Potential bei großen Abständen					
	4.3	Quarkonia	67				

5	Sch 5.1	wache Wechselwirkung Betazerfall von Kernen: Fermitheorie	69 70			
	5.2	Schwache Zerfälle seltsamer Teilchen	77			
	5.3	Schwache Mischungsverhältnis mit 6 Quarks	78			
	5.4	Neutrale Ströme	78			
	5.5	Nachweis W^{\pm}, Z^0	79			
6 Standardmodell						
	6.1	Chirale Fermionen	83			
	6.2	Symmetriegruppe der elektromagnetischen WW	84			
		$6.2.1 \text{Isospin} \dots \dots$	84			
		6.2.2 Hyperladung Y	85			
		6.2.3 $SU(2) \times U(1)$ Transformationen	85			
		6.2.4 Chirale Struktur der Darstellungen	86			
	6.3	Lokale Eichinvarianz, Wechselwirkungen	87			
	6.4	Symmetriebrechung, Higgs-Mechanismus	93			
	6.5	Fermionmassen und -Mischung	98			
		$6.5.1 \text{Eine Generation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	98			
		6.5.2 Mehrere Generationen	99			
7	Neı	itrale Ströme	103			
	7.1	Nachweis W^{\pm}, Z^0	104			
	7.2	Zerfall neutraler K^0 -Mesonen	106			
	7.3	CP-Verletzung im K^0 -Zerfall	109			
	7.4	Neutrinooszillationen	110			
8	8 Status des Standardmodells Perspektiven					
	8.1	Vorhersagen und Tests	113			
		8.1.1 Niederenergie-Limes	113			
		8.1.2 Z-Boson-Observable	116			
		8.1.3 W^+W^- -Paarerzeugung in e^+e^- (LEP)	118			
		8.1.4 Globale Analyse	119			
	8.2	Higgs-Bosonen	120			
		8.2.1 Eigenschaften	120			
		8.2.2 Erzeugung und Nachweis am LHC	122			
		8.2.3 Hochenergieverhalten	124			
9	Bev	rond the Standard Modell	127			
-	9.1	Massive Neutrinos	127			
	9.2	Grand Unification	127			
	9.3	Supersymmetrie (SUSY)	128			
\mathbf{A}	Literaturverzeichnis & Index 129					

Kapitel 1

Tiefinelastische Streuung, Quarks

Ziel: Struktur der Nukleonen

Methode: Streuung hochenergetischer punktförmiger Teilchen an H_2 - D_2 -Target mit hohem q^2 -Übertrag.

Erinnerung: Ladungsradius d. Protons:

$$\sqrt{\langle r^2 \rangle_p} = 0,86 \text{ fm}$$

Pionen, Kaonen:

$$\begin{split} \sqrt{\langle r^2 \rangle_\pi} &= (0,67\pm 0,02) \text{ fm} \\ \sqrt{\langle r^2 \rangle_K} &= (0,58\pm 0,04) \text{ fm} \end{split}$$

Methode: Streuung hochenergetischer π , K an Hüllenelektronen von H_2 -Target. \Rightarrow Proton, π^{\pm} , K^{\pm} sind *keine* punktförmigen Teilchen

$$\langle r^2 \rangle_{\pi,K}^{1/2} < \langle r^2 \rangle_p^{1/2}$$

1.1 Angeregte Nukleozustände

Inelastische e^- -p-Streuung: **Nukleoresonanzen** \Rightarrow p ist *nicht* punktförmig $\Delta^+(1232)$ -**Resonanz**: lorentzinvariante Masse $W = 1232 \text{ MeV}/c^2$ Breite $\Gamma = 120 \text{ MeV}$

$$\tau = \frac{\hbar}{\Gamma} = \frac{\hbar c}{\Gamma c} \simeq \frac{200 \text{ MeV} \cdot \text{fm}}{120 \text{ MeV} \cdot 3 \cdot 10^{23} \text{ fm/sec}}$$

 $\tau = 5,5\,\cdot\,10^{-24}$ sec (starke WW), Zerfall:

$$\Delta^+ \to p + \underbrace{\pi^0}_{\to 2\gamma} \text{ oder } \Delta^+ \to n + \underbrace{\pi^+}_{\to \mu^+ + \nu_{\mu}}$$

$$\Delta^+ \to p + 2\gamma \qquad \qquad \Delta^+ \to n + \mu^+ + \nu_\mu$$

 $\Gamma=120$ MeV, $\tau=\frac{\hbar}{\Gamma}=5,5\,\cdot\,10^{-24}$ sec \Rightarrow Typische Zeitskala der starken WW.

Labor
system: Energieverlust ν des $e^-\colon \nu=E-E'$

$$q^{2} = \frac{\nu^{2}}{c^{2}} - (\vec{p} - \vec{p}')^{2} = \frac{\nu^{2}}{c^{2}} - \vec{p}_{h}'^{2}$$

Struktur $\frac{d\sigma}{dE'}$ bei *e-p*-Streuung:

Keine quasielastische Streuung (im Gegensatz zur Streuung an Kernen) \Rightarrow Konstituenten (Quarks) verlassen das Proton nicht.

$$\begin{split} E'_h &= \nu + mc^2 \qquad \vec{p}'_h = \vec{p} - \vec{p}' \\ W^2 &:= E'^2_h - (\vec{p}'_h c)^2 = m^2 c^4 + q^2 c^2 + 2\nu mc^2 \end{split}$$

Dabei ist W die **lorentzinvariante Masse** des hadronischen Zustands. q und ν sind lorentzinvariant.

Erreichte Werte von ν bzw. $q^2:$

$$\begin{array}{lll} \mathrm{SLAC:} & E\simeq 24~\mathrm{GeV} \\ & \nu_{max}\simeq 15~\mathrm{GeV} \\ & |q_{max}^2|\simeq 20~(\mathrm{GeV/c})^2 \end{array}$$

$$\begin{array}{lll} \mathrm{CERN:} & E_{\mu}\simeq 300~\mathrm{GeV} \\ & \nu_{max}\simeq 200~\mathrm{GeV} \\ & |q_{max}^2|\simeq 220~(\mathrm{GeV/c})^2 \end{array}$$

$$\begin{array}{lll} \mathrm{LHC:} & E_{p,\bar{p}}=14~\mathrm{TeV} \end{array}$$

Abbildung 1.1: Elektron-Proton-Streuung: gemessener Wirkungsquerschnitt normiert auf den Mott-Wirkungsquerschnitt als Funktion von Q^2 für verschiedene Werte der invarianten Masse W. Schlüsse: Strukturfunktion konstant mit Q^2 . Streuung an Punktladungen. Proton hat eine Unterstruktur punktförmiger Konstituenten ("Quarks")

$$\frac{d^2\sigma}{dE'\,d\Omega} \left/ \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \simeq 8 \cdot 10^{-2}$$
$$\frac{d\sigma}{d\Omega} \left/ \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \simeq 7 \cdot 8 \cdot 10^{-2} \simeq 0.5$$

Punktförmige Streuung an den Quarks.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \propto Z^2$$

$$p = (u, u, d)$$

$$\left\langle (Ze)^2 \right\rangle = \frac{1}{3} \left[\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 \right] e^2 = \left(\frac{1}{3}\right) e^2$$

$$\Rightarrow \frac{d\sigma}{d\Omega} \simeq \frac{1}{3} \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}$$

 \rightarrow Hinweis auf Quark-Ladung $\frac{1}{3}$ bzw. $\frac{2}{3}$

1.2 Strukturfunktionen

 $\widehat{=}$ Formfaktoren der elastischen Streuung

- i) elastischer Fall: $W = m \Rightarrow 2m\nu + q^2 = 0$
- ii) inelastischer Fall: $W > m \Rightarrow 2m\nu + q^2 > 0$

daher ist bei der tiefinelastischen Streuung der Wirkungsquerschnitt Funktion 2er Variablen (z. B.: q^2, ν). \Rightarrow Bjorkensche Skalenvariable x:

$$x := \frac{Q^2}{2m\nu}$$

mit $Q^2 = -q^2$, x: Maß für die Inelastizität der Streuung. Für W = m und $2m\nu = Q^2 \Rightarrow x = 1$ (elastischer Fall) Für W > m ist $2m\nu > Q^2$ und 0 < x < 1 (inelastischer Fall)

$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\underbrace{F_1(x,\theta)}_{\text{berücksichtigt}} + F_2(x,\theta)\right)$$

$$(\sum_{\substack{\text{magn. WW}\\(\text{Spin d. Quarks})}} + F_2(x,\theta))$$

Beobachtungen:

- i) $F_2(x, Q^2)$ unabhängig von Q^2 bei festem x
 - \Rightarrow Unterstützung des Quarkmodells
- ii) Für spinlose Quarks wäre $F_1 \equiv 0$. Für Spin- $\frac{1}{2}$ Quarks: $F_2(x) = 2xF_1(x)$
 - \rightarrow Callan-Gross-Relation \Rightarrow Quarks sind Spin- $\frac{1}{2}$ Teilchen
- iii) Protonen, Neutronen $(s = \frac{\hbar}{2})$ bestehen aus mind. 3q !

Rutherford \rightarrow Mott \rightarrow Tiefinelastische Streuung:

i) Mottstreuung: Berücksichtigt relativ. Effekte $(\beta \rightarrow 1)$ des e^{-} -Spins.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} \cdot \cos^2 \frac{\theta}{2} \qquad (\beta = 1)$$

Unterdrückung der Streuung $\theta=180\,^{\circ}$. Ursache: Erhaltung der Helizität in der QED für masselose Teilchen.

ii) Proton hat Spin \Rightarrow zusätzliche magnetische Wechselwirkung. Magnetisches Moment $\mu = \frac{g}{2} \left(\frac{e\hbar}{2M}\right)$

Magnetische WW \Leftrightarrow Umklappen des Spins des Nukleons. Diese WW bevorzugt Streuung um 180° und verbietet jene bei $\theta = 0^{\circ} \Rightarrow$ zusätzlicher Faktor sin² $\frac{\theta}{2}$

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} \cdot \sin^2 \frac{\theta}{2} \left(1 + a \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}\right)$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{pkt.},s = 1/2} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(1 + a \tan^2 \frac{\theta}{2}\right)$$

mit $a = \frac{Q^2}{2M^2c^2}$. Begründung: Matrixelement $\propto \mu \propto \frac{1}{M} \Rightarrow$ Wahrscheinlichkeit proportional zu M^{-2} .

1.2. STRUKTURFUNKTIONEN

Für elastische Elektron-Proton-Streuung benötigt man Formfaktoren.

$$\Rightarrow \left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \cdot \tan^2 \frac{\theta}{2}\right]$$

Rosenbluth-Formel mit $G_{E,M}(Q^2)$ = elektrische (magnetische) Formfaktoren. $\tau = \frac{Q^2}{4M^2c^2}$. Tiefinelastische Streuung:

$$\frac{d^2\sigma}{d\Omega \ dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left(W_2(Q^2,\nu) + 2W_1(Q^2,\tau)\tan^2\frac{\theta}{2}\right)$$

Oft verwendet man dimensionslose Strukturfunktionen: $F_1 = Mc^2 W_1(Q^2, \nu)$ und $F_2 = \nu W_2(Q^2, \nu)$

Beobachtung: Strukturfunktionen hängen (für $x \gtrsim 0, 1$) nicht von Q^2 ab \Rightarrow elastische Streuung von Elektronen an punktförmigen Konstituenten.

 $F_1 \neq 0 \Rightarrow$ Konstituenten haben Spin (und wechselwirken magnetisch mit den Elektronen).

 $2xF_1 = F_2$ (**Callan-Groß-Beziehung**) für Spin- $\frac{1}{2}$ -Teilchen \Rightarrow Konstituenten (i.e. Quarks) sind Spin- $\frac{1}{2}$ -Teilchen.

elastische Streuung des Elektrons am "Parton"

Für höhere $Q^2\mbox{-Werte}$ s
ind der elastische Peak und die Resonanzen durch Formfaktoren unterdrückt.

1.3 Impulsverteilung der Quarks

Bezugssystem mit großem $\vec{p}_h \Rightarrow$ nur longitudinale Impulse wichtig. Quark mit Impuls xp_h und elastischer Stoß mit einem Elektron:

$$(xp'_h)^2 = (xp_h + q)^2 = m_q^2 c^2$$

wegen $|\vec{p}_h|'|^2 = |\vec{p}_h|^2$ gilt: $x = \frac{-q^2}{2p_h q}$ und wegen $\nu = p_h \cdot q/m$: $x = \frac{-q^2}{2m\nu}$. In diesem Bezugssystem entspricht x dem Teilimpuls eines Quarks xp_h mit 0 < x < 1.

1.4 Tiefinelastische ν -Nukleonstreuung

- 1. Kopplung über schwache Wechselwirkung
- 2. Vgl. zur e^- -Nukleonstreuung: Aufschluss über Quarkladungen
- 3. Unterschied q und \bar{q} -Streuung

Neutrinobeam: $p + Be \to \pi^{\pm}, K^{\pm} + \dots, \pi^{\pm}, K^{\pm} \to \mu^{+} + \nu_{\mu}, \mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$ Abschirmung aller geladenen Teilchen führt zu einem reinen ν -Strahl.

Dominierende Prozesse in der tief-inelastischen Streuung

Nachweis hochenergetischer Neutrinos

$$\nu_{\mu} + p \rightarrow \mu^{-} + \text{Hadronen}$$

Bei $E_{\nu} \simeq 200 \ GeV$ werden ca. 10 Hadronen erzeugt. Totaler WQ σ_{ν} :

$$\sigma_{\nu} \simeq G_F^2 E_{\nu}$$

 $\Rightarrow \sigma_{\nu, \text{tot}} \simeq E_{\nu}$. \Rightarrow Streuung an Quarks bestätigt.

Elementare Streuprozesse

(für ν_{μ} und $\bar{\nu}_{\mu}$)

$$\nu_{\mu}d \to \mu^{-}u$$
$$\nu_{\mu}\bar{u} \to \mu^{-}\bar{d}$$
$$\bar{\nu}_{\mu}u \to \mu^{+}d$$
$$\bar{\nu}_{\mu}\bar{d} \to \mu^{+}\bar{u}$$

"geladene Strom"-Wechselwirkungen (i.
e. Austausch $W^\pm\operatorname{-Boson}).$ Wenn es im Proton nur u, d Quarks gibt, würde folgen:

$$\Rightarrow R := \frac{\sigma(\bar{\nu}q)}{\sigma(\nu q)} = \frac{1}{3}$$

(wegen Paritätsverletzung). Experiment liefert jedoch: $(10 < E_{\nu}/GeV < 100)$: $R=0,45\Rightarrow$ Es gibt Antiquarks im Nukleon!

Bei der $\bar{\nu}, q$ - Streuung ist $J_z = +1$ festgelegt (Folge der Paritätsverletzung). \Rightarrow Nur eine Einstellmöglichkeit von sonst dreien (für J = 1) ist erlaubt.

Ladung der Konstituenten

Der Nachweis über die Ladungen der Konstituenten gelang über die teifinelastische Neutrino-Nukleon-Streuung. Auch die Anzahl der Konstituenten im Nukleon wurde damit festgestellt. Unser heutiges Bild vom Aufbau der Nukleonen:

$$\mathbf{p}=(\mathbf{u},\mathbf{u},\mathbf{d})$$
 "up-Quarks"

n=(u,d,d) "down-Quarks"

mit Ladungen u: +2/3 e; d: -1/3 e. Für $y := \nu/E$ und dem Grenzfall $y \rightarrow 0$ (Vorwärtstreuung ist $\frac{d^2\sigma}{dq^2dx} = \frac{4\pi\alpha^2}{q^4}\left(\frac{F_2}{x}\right)$). Der F_1 -Beitrag verschwindet. In diesem Bild sollte gelten:

$$\underbrace{F_2^{ep}}_{\substack{\text{,el. "}\\ \text{Struktur-Fkt. der}\\ e^-p\text{-Streuung}}} \sim \left(\frac{2}{3}\right)^2 u_p(x) + \left(-\frac{1}{3}\right)^2 d_p(x)$$

mit $u_p(x)$: Verteilungsfunktion der u-Quarks im Proton und $d_p(x)$: Verteilungsfunktion der d-Quarks im Proton.

$$F_2^{en} \sim \left(-\frac{1}{3}\right)^2 d_n(x) + \left(\frac{2}{3}\right)^2 u_n(x)$$

Weiterhin gilt: $u_n(x) = d_p(x)$ und $d_n(x) = u_p(x)$

$$\underbrace{F_2^{eN}}_{\substack{e^-\text{-Nukleonen-streuung}}} := \frac{1}{2}(F_2^{ep} + F_2^{en}) \sim \frac{1}{2}\left(\frac{5}{9}u_p(x) + \frac{5}{9}d_p(x)\right)$$

$$F_2^{eN} \sim \frac{5}{18} \left(u_p(x) + d_p(x) \right)$$

 ν -Nukleonenstreuung koppelt mit gleicher Stärke an u- und d-Quarks:

$$F_2^{\nu N} \sim (u_p(x) + d_p(x))$$
$$\Rightarrow F_2^{\nu N} = \frac{18}{5} F_2^{eN}$$

1972 fand man experimentell:

$$\int_0^1 F_2^{\nu N} \, dx = 0,50 \pm 0,005$$

Für Q^2 von 1 bis 10 GeV². \Rightarrow Nur die Hälfte des Nukloenenimpulses (bzw. der Masse) werden von den Quarks getragen! Dies führt zu dem Postulat der *Gluonen*, den Austauschbosonen der starken Wechselwirkung.

Gluonen koppeln nicht an e^- , ν : Sie tragen also keine Ladung und nehmen nicht an der schwachen Wechselwirkung teil.

Abbildung 1.2: Erster Vergleich von $F_2^{\nu N}$, gemessen in der Neutrino-Nukleon-Streuung am PS-Neutrinostrahl des CERN mit der Gargamelle-Blasenkammer, die eine spezielle dichte Flüssigkeit verwendete, mit SLAC-Resultaten zu F_2^{eN} aus der Elektron-Nukleon-Streuung. Die Daten überstreichen etwa gleiche Bereiche in q^2 . Die beiden Messergebnisse stimmen überein, wenn die in der Elektron-Streuung erhaltenen Werte mit $\frac{18}{5}$, d.h. dem inversen der mittleren quadratischen Ladung der u- und d-Quarks, multipliziert werden. Dies bestätigt die Annahme drittelzahliger Ladungen für die Quarks. Man beachte, dass die Gesamtfläche unter den Kurven, die dem insgesamt von den Quarks getragenen Impulsbruchteil des Nukleon entspricht, etwa 0,5 ist. Die fehlende Masse wird gluonischen Komponenten zugeschrieben, die als Träger der zwischen den Quarks wirkenden Farbkraft postuliert wurden.

Zusammenfassung: Tiefinelastische Lepton-Nukleonstreuung

- 1. Nukleonen bestehen aus punktförmigen Konstituenten. $F_2 \sim \text{const. in } Q^2$.
- 2. Die Konstituenten haben Spin-1/2. $F_2 = 2xF_1$.
- 3. Elektromagnetischer und schwacher Wirkungsquerschnitt sind konsistent mit Quarkmodell.

$$F_2^{\nu N} = \frac{18}{5} \cdot F_2^{eN}$$

 $(Ladung \frac{2}{3}, -\frac{1}{3})$

- 4. Gluonen kommen für $\sim 50\%$ der Nukleonenmasse auf. Sie vermitteln die Bindung zwischen den Quarks.
- 5. Es existieren $q\bar{q}\mbox{-}{\rm Paare}$ (See-Quarks) mit "weicher" Impulsverteilung. Es existieren 3 Valenzquarks.

1.5 Antiquarks im Nukleon

Nachweis von Antiquarks im Nukleon durch Neutrinostrahlung. Virtuelle Quark-Antiquarkpaare: "See"-Quarks. Schematische Darstellung der Strukturfunktion: Proton besteht aus:

Kapitel 2

Quantenchromodynamik (QCD)

2.1 Tiefinelastische Streuung im Parton-Bild (theoretische Zusammenfassung)

Quark-Parton-Modell

Bei großen Impulsüberträgen $Q^2 \gtrsim (2 \ GeV)^2$ erfolgt die Streuung von Elektronen (Positronen, Neutrinos) an punktförmigen freien Konstituenten des Protons/Neutrons: den Partonen. Partonen = Quarks: Dirac-Teilchen, Spin: $\frac{1}{2}$, Ladung $Q = +\frac{2}{3}$, $-\frac{1}{3}$

u	с	\mathbf{t}	Ladung $Q = +$
d	\mathbf{S}	b	Ladung $Q = -$
1. Generation	2. Gen.	3. Gen.	

 $\frac{2}{3}$ $\frac{1}{3}$

Proton: \underline{uud} + $\underline{u\bar{u} + d\bar{d} + s\bar{s} + \dots}$ Valenzquarks Seequarks Neutron: $ddu + u\bar{u} + d\bar{d} + s\bar{s} + \dots$ Antiproton: $(\bar{u}\bar{u}\bar{d})$ + Seequarks wobei \bar{u}, \bar{d}, \dots : Antiquarks

Tiefinelastische e-N-Streuung

N = p, n: Proton oder Neutron.

Struktur des WQ:

$$d\sigma^{eN} = \sum_{q=u,d,\ldots} d\sigma^{eq} \cdot [\text{Wahrsch. für q in N}]$$

e-Quark-Streuung: Parton-Prozess

Matrixelement \mathcal{M} aus Feynman Regeln (\rightarrow Kap. 11)

e.m. Vertex für Quarks:

wobe
i σ,σ' die Helizitäten von e und λ,λ' die von
q sind.

$$\mathcal{M} = +i\frac{e^2 Q_q}{(p-p')^2} (\bar{u}'\gamma_\nu u) (U'\gamma^\mu U)$$

Alle Teilchen können als masselos angenommen werden. 2-T-WQ fürm=0im CMS:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2$$

mit $d\Omega = \sin\theta d\theta d\phi$

• Invariante Variable (Mandelstam-Variable)

$$s = (p+k)^2 = 2pk = (p'+k')^2 = 2p'k' \equiv (p^0+k^0)^2_{\text{CMS}}$$

2.1. TIEFINELASTISCHE STREUUNG IM PARTON-BILD

$$t = (p - p')^2 = -2pp' = (k - k')^2 = -2kk'$$
$$u = (p - k')^2 = (k - p')^2 = -2pk' = -2kp'$$
$$\boxed{s + u + t = 0}$$

wegen p+k=p'+k'.WQ durch invariante Variable ausdrücken \Rightarrow Unabhängigkeit vom Bezugssystem.

$$d\Omega = d\phi d\cos\theta \xrightarrow[\text{itter } \phi]{\text{itter } \phi} 2\pi d\cos\theta$$

$$t = -2p^{0}p'^{0}(1 - \cos\theta) = -\frac{s}{2}(1 - \cos\theta) = -\frac{s}{2} + \frac{s}{2}\cos\theta$$

 $dt = \tfrac{s}{2} d\cos\theta, \, d\cos\theta = \tfrac{s}{2} dt, \, d\Omega = \tfrac{4\pi}{s} dt,$

$$\frac{d\sigma}{dt} = \frac{4\pi}{s} \frac{d\sigma}{d\Omega}$$
$$\frac{d\sigma}{dt} = \frac{1}{16\pi s^2} \overline{|\mathcal{M}|^2}$$

 \rightarrow unpolarisierter Wirkungsquerschnitt

$$\overline{|\mathcal{M}|^2} = \frac{1}{2} \cdot \frac{1}{2} \sum_{\sigma,\sigma'} \sum_{\lambda,\lambda'} |\mathcal{M}|^2$$

$$\begin{split} |\mathcal{M}|^2 &= \frac{e^4 Q_q^2}{t^2} \cdot \frac{1}{4} \underbrace{\sum_{\sigma,\sigma'} (u'_{\sigma} \gamma_{\mu} u_{\sigma} \bar{u}_{\sigma} \gamma_{\nu})}_{Tr(\not{p'} \gamma_{\mu} \not{p} \gamma_{\nu})} \cdot \underbrace{\sum_{\lambda,\lambda'} (\bar{U}'_{\lambda'} \gamma^{\mu} U'_{\lambda} U_{\lambda} \gamma^{\nu} U'_{\lambda'})}_{Tr(\not{q'} \gamma^{\mu} \not{q} \gamma^{\nu})} \\ &= \frac{e^4 Q_q^2}{t^2} \cdot 2(s^2 + u^2) \end{split}$$

gleiches Ergebnis für Antiquarks: $q=u,d,\ldots,\bar{u},\bar{d},\ldots$

$$\frac{d\sigma^{eq}}{dt} = \underbrace{\frac{e^4}{16\pi^2}}_{\alpha^2} \cdot \frac{\pi}{s^2 t^2} \cdot 2(s^2 + u^2) \cdot Q_q^2 = \frac{2\pi\alpha^2}{t^2} \cdot \frac{s^2 + u^2}{s^2} \cdot Q_q^2$$

• übliche Variable: $Q^2 = -t \ (Q^2 > 0)$ mit $u = -s - t = -s + Q^2$

$$\frac{d\sigma^{eq}}{dQ^2} = \frac{2\pi\alpha^2}{Q^4} \left[1 + \left(1 - \frac{Q^2}{s}\right)^2 \right] \cdot Q_q^2$$

• neue Variable: $y = \frac{Q^2}{s}, \, dQ^2 = sdy$

$$\boxed{\frac{d\sigma^{eq}}{dy} = \frac{2\pi\alpha^2}{s} \cdot \frac{1 + (1-y)^2}{y^2} \cdot Q_q^2}$$

Jetzt vom Parton-Prozess zum Nukleon-Prozess:

• Bezugssystem, worin Protonimpuls $\gg M_N$, daher $M_p = 0$ (z. B. e-N-CMS) Quark q hat Impuls k = xP, 0 < x < 1

$$(p+P)^2 = S \left[= (p^0 + P^0)^2 \text{ im e-N-CMS} \right] = 2p \cdot P$$

S ist eine feste Größe

- $s = (p+k)^2 = 2k \cdot p = x \cdot 2pP = xS$
- Quarkverteilungsfunktionen $q^N(x)$ (Quark-Dichten): $q^N(x)dx$: Wahrscheinlichkeit für Quarksorte q im Nukleon N mit Impulsanteil zwischen x und x + dx.

$$\frac{d\sigma^{eq}}{dy}q^{N}(x) dx = \frac{2\pi\alpha^{2}}{S} \cdot \frac{1 + (1 - y)^{2}}{y^{2}} \cdot \frac{1}{x}Q_{q}^{2} \cdot q^{N}(x) dx$$

$$\underbrace{\sum_{q=u,d,\dots} \frac{d\sigma^{eq}}{dy}q^{N}(x)}_{=\frac{d^{2}\sigma^{eN}}{dydx}} dx = \underbrace{\frac{2\pi\alpha^{2}}{S} \cdot \frac{1 + (1 - y)^{2}}{y^{2}} \cdot \frac{1}{x}\sum_{q}Q_{q}^{2}q^{N}(x)}_{=(\dots)} dx$$

Mit $Q^2 = xyS$

$$\boxed{\frac{d^2 \sigma^{eN}}{dy dx} = \frac{2\pi\alpha^2}{Q^4} \cdot S \cdot \left[1 + (1-y)^2\right] \cdot x \sum_q Q_q^2 q^N(x)} \quad \textbf{(A)}$$

Mit Strukturfunktionen $W_1(\nu, Q^2), W_2(\nu, Q^2)$ parametrisierter WQ, invariant geschrieben:

$$\frac{d^2 \sigma^{eN}}{dy dx} = \frac{2\pi \alpha^2}{Q^4} \cdot S \cdot \left[2xy^2 W_1 + 2(1-y)\nu W_x\right]$$

Variable: $\nu = P \cdot (p - p') = \frac{Q^2}{2x} = \frac{y}{2}S \left[= M(E - E')$ im N-Ruhesystem]¹ empirisch:

Scaling:
$$W_{1}(\nu, Q^{2}) = F_{1}\left(\frac{Q^{2}}{2\nu}\right) = F_{1}(x)$$
$$\nu W_{2}(\nu, Q^{2}) = F_{2}\left(\frac{Q^{2}}{2\nu}\right) = F_{2}(x)$$
$$\Rightarrow \frac{d^{2}\sigma^{eN}}{dydx} = \frac{2\pi\alpha^{2}}{Q^{4}}S\left[2xy^{2}F_{1}^{N}(x) + 2(1-y)F_{2}^{N}(x)\right] \qquad \textbf{(B)}$$

Vergleich von (A) und (B) ergibt die Darstellung der Strukturfunktionen durch die Quarkverteilungen:

$$F_2^N(x) = 2xF_1^N(x)$$

$$F_2^N(x) = x\sum_q Q_q^2 q^N(x)$$

$$^1P = \frac{1}{x}k, P \cdot (p - p') = \frac{1}{2x}(2kp - 2kp') = \frac{1}{2x}(s + u) = \frac{-t}{2x} = \frac{Q^2}{2x}$$

2.2. EICHTHEORIEN

Dies nennt man die **Callan-Groß-Beziehung**. Bezeichnung: $u^p(x) \equiv u(x), d^p(x) \equiv d(x)$

$$\frac{1}{x}F_2^p = \frac{4}{9}\left[u(x) + \bar{u}(x)\right] + \frac{1}{9}\left[d(x) + \bar{d}(x)\right] + \frac{1}{9}\left[s(x) + \bar{s}(x)\right].$$

Für Neutron: $d^n = u^p$, $d^p = u^n$

$$\frac{1}{x}F_2^n = \frac{4}{9}\left[d(x) + \bar{d}(x)\right] + \frac{1}{9}\left[u(x) + \bar{u}(x)\right] + \dots \text{(See, symm.)}$$

$$F_2^{n+p} = \frac{1}{2}(F_2^p + F_2^n) = \frac{5}{18}x[u(x) + \bar{u}(x) + d(x) + \bar{d}(x)] + \dots \text{ (See vernachl.)}$$
$$\int_0^1 dx \ x[u(x) + \bar{u}(x) + d(x) + \bar{d}(x)] =$$

Erwartungswert der Summe alle Quarkimpulse im Nukleon = Nukleon-Impuls (?)

Experiment: $0,54\pm0,4$ \Rightarrow Defizit von ca. 50%

+ Quark-Parton Modell ergbit

- (i) tief-inelastischen WQ, Q^2 -Unabhängigkeit der Struktrufunktionen
- (ii) Interpretation der Scaling-Variable $x = \frac{Q^2}{2M_N\nu}$ mit $\nu = E' E$ (im Ruhesystem des Nukleons)

als Quarkimpuls im Nukleon (in Einheiten des N-Impulses)

- unbeantwortete Fragen:
 - (i) Wo ist der fehlende Impuls?
 - (ii) Wo bleibt die starke WW? Warum vernachlässigbar?
 - (iii) Genaue Messungen ergeben schwach
e $Q^2\mbox{-}{\rm Abhängigkeit}$ der Strukturfunktionen: $F_i(x,Q^2)$

Scaling-Violation

 \rightarrow ins besondere Ergebnisse von HERA

Diese Fragen werden beantwortet: von der QCD.

 \rightarrow asymptotische Freiheit

$$\rightarrow q(x, Q^2) \Rightarrow F_i(x, Q^2)$$

2.2 Eichtheorien

2.2.1 Lagrange-Formalismus für Felder

bisher (QED): WW beschrieben durch Hamilton-Operator $H_{int} = \int d^3x \mathcal{H}_{int}$

statt dessen: Lagrange-Funktion $L = \int d^3x \mathcal{L}$, mit \mathcal{L} : Lagrangedichte

$$S = \int_{-\infty}^{\infty} dt \ L = \int \underbrace{d^4x}_{inv.} \underbrace{\mathcal{L}}_{inv.}$$

Dies ist die Wirkung. Dabei ist \mathcal{L} eine Lorentzinvariante Größe. $\delta S = 0 \Rightarrow$ Bewegungsgleichungen, kovariant.

Gründe für Lagrange-Funktion/Dichte als dynamische Grundgröße:

- liefert Bewegungsgleichungen nach einem universellen Prinzip
- Lorentz-Invarianz ist manifestiert
- weitere Eigenschaften von *L* haben wichtige physikalische Konsequenzen,
 z. B. Noether-Theorem. Hier besonders: innere Symmetrien (keine Raum-Zeit-Symmetrien)

Mechanik:

L =

$$L(q_k, \dot{q}_k) \xrightarrow{\delta S = 0} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0 \qquad \text{Bewegungsgleichungen}$$

Feldtheorie:

 $L = \int d^3x \mathcal{L}$

$$\mathcal{L} = \mathcal{L}(\phi(x), \partial_{\mu}\phi(x))$$
(statt k: kontinuierlicher Index x)

$$\delta S = 0 \Rightarrow \quad \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0 \qquad \text{Bewegungsgleichungen}$$

Falls mehrere Felder $\phi_j(x)$

(auch Komponenten von Vektorfeldern, Spinorfeldern)

$$\phi_{j} = A_{\mu}, \psi_{a} \ (a = 1, \dots, 4, \bar{\psi}_{a}, \psi = \begin{pmatrix} \psi_{1} \\ \vdots \\ \psi_{4} \end{pmatrix}, \bar{\psi} = (\psi_{1}^{*}, \psi_{2}^{*}, -\psi_{3}^{*}, -\psi_{4}^{*})$$
$$\boxed{\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{j})} \frac{\partial \mathcal{L}}{\partial \phi_{j}} = 0}$$
Bewegungsgleichungen

Beispiele:

a) <u>Skalarfeld</u>: $\phi(x), \phi^{\dagger}(x)$ (klassisch oder quantisiert)

$$\mathcal{L} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi$$

mit $\phi_i = \phi, \phi^{\dagger}$

$$\partial_{\mu}\underbrace{\left(\frac{\partial\mathcal{L}}{\partial_{\mu}\phi^{\dagger}}\right)}_{\partial^{\mu}\phi} - \underbrace{\frac{\partial\mathcal{L}}{\partial\phi^{\dagger}}}_{-m^{2}\phi} = 0 \Rightarrow \partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0$$

Klein-Gordon-Gleichung:

$$(\Box + m^2)\phi = 0$$

2.2. EICHTHEORIEN

b) Spinorfeld: $\psi, \bar{\psi}$ bzw. $\psi_a, \bar{\psi}_a$ $(a = 1, \dots, 4)$

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi = \sum_{a,b} \bar{\psi}_{a}[i\gamma^{\mu}_{ab}\partial_{\mu} - m\delta_{ab}]\psi_{b}$$
$$\partial_{\mu}\underbrace{\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\bar{\psi}_{a})}}_{=0} - \frac{\partial\mathcal{L}}{\partial\bar{\psi}_{a}} = 0$$
$$\sum_{b}(i\gamma^{\mu}_{ab}\partial_{\mu} - m\delta_{ab})\psi_{b} = 0$$

Dirac-Gleichung:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

c) <u>Photonfeld</u>: A_{μ}

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}, F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

 $\delta S = 0 \Rightarrow [+\text{Lorentz-Eichung } \partial_{\mu} A^{\mu} = 0]$

$$\underbrace{\frac{\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right]}_{\partial_{\mu} (\partial^{\mu} A^{\nu})}} = 0$$

Maxwell-Gleichungen für freies Photon-Feld:

 $\Box A^{\nu} = 0$

2.2.2 QED als Eichtheorie

Felder: Fermion-Feld $\psi, \bar{\psi}$ (Dirac-Feld); Photon-Feld A_{μ} Freies Dirac-Feld hat Lagrange-Dichte

$$\mathcal{L}_0 = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi$$

Formale Symmetrie: $\psi \to e^{i\alpha}\psi, \, \alpha \in \mathbb{R}$

Globale Eichtransformation

Abelsche Gruppe: U(1). Da $\bar{\psi} \to e^{-i\alpha}\bar{\psi} \Rightarrow \mathcal{L}_0$ ist invariant.²

Lokale Eichtransformationen

 $\psi(x)) \to \underbrace{e^{i\alpha(x)}}_{U(x)} \psi(x), \, \alpha(x)$ reelle Funktion (beliebig). \mathcal{L}_0 nicht symmetrisch, da

$$\partial_{\mu}(e^{i\alpha(x)}\psi(x)) \neq e^{i\alpha(x)\partial_{\mu}\psi(x)}$$

Invarianz wird erreicht durch Ersetzten der kovarianten Ableitung

$$\partial_{\mu} \to \mathcal{D}_{\mu} = \partial_{\mu} - ieA_{\mu}$$

²ergibt $\partial_{\mu}(\bar{\psi}\gamma^{\mu}\psi) = 0 \Rightarrow Q = \int d^{3}x \ j^{0}$ Erhaltungsgröße

unter der gleichzeitigen Transformation

$$\psi(x) \to \psi'(x) = e^{i\alpha(x)}\psi(x) \equiv U(x)\psi(x)$$
$$A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x)$$

Gruppe der Eichtransformationen: Eichgruppe Grundlegende Eigenschaft:

$$\begin{array}{l}
\overline{\mathcal{D}'_{\mu}\psi'(x) = U(x)\mathcal{D}_{\mu}\psi(x)} & (\mathcal{D}'_{\mu} = \partial_{\mu} - ieA'_{\mu}) \\
\Rightarrow \mathcal{L}'_{0} = \overline{\psi}'(i\gamma^{\mu}\mathcal{D}'_{\mu} - m)\psi' = \\
= \overline{u\psi}[i\gamma^{\mu}\underbrace{\mathcal{D}'_{\mu}\psi'}_{U\mathcal{D}_{\mu}\psi} - mU\psi] = \\
= \overline{\psi}\underbrace{U^{\dagger}U}_{=1}^{\dagger}[i\gamma^{\mu}\mathcal{D}_{\mu} - m]\psi = \mathcal{L}_{0}
\end{array}$$

For derung nach lokaler Eichinvarianz \Rightarrow Existenz eines Vektorfeldes A_{μ} mit Kopplung an ψ -Feld:

$$\mathcal{L}_0 \to \mathcal{L} = \bar{\psi}(i\gamma^{\mu}\mathcal{D}_{\mu} - m)\psi = \mathcal{L}_0 + e\underbrace{\bar{\psi}\gamma^{\mu}\psi}_{=j^{\mu}}A_{\mu} \equiv ej^{\mu}A_{\mu}$$

mit e: Kopplungskonstante, A_{μ} wird ein **dynamisches Feld** durch

$$\underbrace{\mathcal{L} + \mathcal{L}_A}_{=L_{\text{QED}} \equiv \mathcal{L}_0 + \mathcal{L}_A + \underbrace{\mathcal{L}_{int}}_{e^{j\mu}A_{\mu}}}, \quad \mathcal{L}_A = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Legendre-Transformation $\mathcal{L}_{int} \to \mathcal{H}_{int} = -\mathcal{L}_{int} \Rightarrow$ weiter wie bisher (Vertices, ...)

 $\mathcal{L}_0 \to \mathrm{freie} \ \mathrm{Dirac}\text{-}\mathrm{Gleichung}$

 $\mathcal{L}_A \to \text{freie Wellengleichung.} \square A_\mu = 0$ $\to \text{Propagatoren für die freien Felder} \to \text{Feynman-Regeln}$

Zusammenfassung:

- (i) Symmetrie von \mathcal{L}_0 global
- (ii) lokale Symmetrie durch $\partial_{\mu} \to \mathcal{D}_{\mu}$ mit $\mathcal{D}'_{\mu}U = U\mathcal{D}_{\mu}$ führt ein Feld A_{μ} ein mit WW ~ $\bar{\psi}\gamma^{\mu}\psi A_{\mu}$
- (iii) A_{μ} dynamisch durch $+\mathcal{L}_{A} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$

Beispiel einer inneren Symmetrie [\equiv keine Raum-Zeit-Symmetrie] und gleichzeitiger Transformation

$$\psi(x) \to U(x)\psi(x) = e^{e\alpha(x)\psi(x)}$$

 $A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu}$

.

2.2.3 Nicht-Abelsche Eichtheorien

Verallgemeinerung: "Phasen"-Transformationen, die nicht kommutieren.

 $\psi \to \psi' = U\psi$ mit $U_1U_2 \neq U_2U_1$, erfordert Matrizen, d.h. ψ ist ein Multiplet:

$$\psi = \left(\begin{array}{c} \psi_1 \\ \vdots \\ \psi_n \end{array} \right) \qquad U:n \times n\text{-Matrix}$$

(i) Globale Symmetrie:

Ausgangspunkt:

$$\mathcal{L}_0 = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi$$

mit $\bar{\psi} = (\bar{\psi}_1, \dots, \bar{\psi}_n) = (\psi_1 \gamma^0, \dots, \psi_n \gamma^0)$ Betrachte unitäre $U: U^{\dagger} = U^{-1} \cdot \psi' = U \psi, \ \bar{\psi}' = \bar{\psi} U^{\dagger} = \bar{\psi} U^{-1},$ $((\psi')^{\dagger} = \psi^{\dagger} U^{\dagger}, \ \bar{\psi}' = \psi^{\dagger} U^{\dagger} \gamma^0 = \psi^{\dagger} \gamma^0 U^{\dagger} = \bar{\psi} U^{\dagger})$

 $\Rightarrow \bar{\psi}\psi, \ \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \text{ invariant, wenn } U \text{ von } x \text{ unabhängig ist.}$ $\Rightarrow \mathcal{L}_{0} \text{ ist invariant unter } \psi \rightarrow U\psi \ U: \text{ globale Eichtransformation. Gilt}$ analog für Skalarfeld-Multiplet:

$$\phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix} \qquad \phi^{\dagger} = (\phi_1^{\dagger}, \dots, \phi_n^{\dagger})$$

 $\phi \to \phi' = U\phi, \ (\phi')^{\dagger} = (U\phi)^{\dagger} = \phi^{\dagger}U^{\dagger} = \phi^{\dagger}U^{-1} \Rightarrow \phi^{\dagger}\phi, \ (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi)$ invariant. $\mathcal{L}_{0} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi$

Physikalisch relevant: Spezielle unitäre $n \times n$ -Matrizen (detU = 1): Gruppe SU(n)

Beispiele:

$$SU(2): \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_1 \\ \psi_2 \\ \psi_1 \end{pmatrix} \quad \text{z.B.} \begin{pmatrix} \psi_\nu \\ \psi_e \\ \psi_e \end{pmatrix} \quad \text{schwacher Isospin}$$
$$SU(3): \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \quad \text{z.B.} \begin{pmatrix} \psi_r \\ \psi_g \\ \psi_b \end{pmatrix} \quad \text{Colour, } \psi: \text{Quarkfeld}$$

all gemein: SU(n):

Matrizen U können geschrieben werden als

$$U = e^{i\Theta_a T_a} \equiv U(\Theta_1, \dots, \Theta_N)$$
 (Summe über a)

mit $\Theta_1, \ldots, \Theta_N \in \mathbb{R}$: reelle Parameter und T_1, \ldots, T_N : $n \times n$ -Matrizen, $T_a^{\dagger} = T_a$, "Generatoren". Θ_a infinitesimal:

$$U \simeq 1 + i\Theta_a T_a(+\mathcal{O}(\Theta^2))$$

Unitarität $+det = 1 \Rightarrow N = n^2 - 1$

 $N-dimensionale \ {\bf Lie-Gruppe}$

 $\begin{array}{ll} n=2; & N=4-1=3\\ n=3; & N=9-1=8 \end{array}$

Kommutator: $[T_a, T_b] \neq 0$, da nicht-abelsch.

$$\boxed{[T_a, T_b] = i f_{abc} T_c} \quad \text{Lie-Algebra}$$

 $f_{abc} \in \mathbb{R}$: Struktur-Konstanten: $f_{abc} = -f_{bac} = -f_{acb} \dots$ antisymmetrisch. SU(2): $f_{abc} = \epsilon_{abc}$ (\doteq Drehimpuls-Algebra)

$$T_a = \frac{1}{2}\sigma_a, \, \sigma_a \, (a = 1, 2, 3)$$
 Pauli-Matrizen

$$SU(3): T_{a} = \frac{1}{2}\lambda_{a} \ (a = 1, \dots, 8), \text{ mit } \lambda_{a}: \text{ Gell-Mann-Matrizen}$$

$$\lambda_{a} = \left(\begin{array}{c} \sigma_{a} & 0\\ \hline 0 & 0 \end{array}\right), \ (a = 1, 2, 3),$$

$$\lambda_{4} = \left(\begin{array}{c} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{array}\right), \ \lambda_{5} = \left(\begin{array}{c} 0 & 0 & -i\\ 0 & 0 & 0\\ +i & 0 & 0 \end{array}\right),$$

$$\lambda_{6} = \left(\begin{array}{c} 0 & 0\\ \hline 0 & \sigma_{1} \end{array}\right), \ \lambda_{7} = \left(\begin{array}{c} 0 & 0\\ \hline 0 & \sigma_{2} \end{array}\right), \ \lambda_{8} = \frac{1}{\sqrt{3}} \left(\begin{array}{c} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -2 \end{array}\right)$$

$$\text{Normierung: } \text{Tr}(T_{a}T_{b}) = \frac{1}{2}\delta_{a}b$$

(ii) <u>Lokale Transformationen</u>: $\Theta_a = \Theta_a(x), a = 1, ..., N$ reelle Funktionen. $\psi(x) \to \psi'(x) = U(x)\psi(x)$

$$U = e^{i\Theta_a(x)T_a = U(\Theta_1(x)\dots\Theta_N(x)) \equiv U(x)}$$

 $\partial_{\mu}\psi'(x) \neq U(x)\partial_{\mu}\psi(x) \Rightarrow$ keine Symmetrie von \mathcal{L}_0 unter $\psi \to U(x)\psi$ Lokale Symmetrie kann erreicht werden durch **kovariante Ableitung**:

$$\partial_{\mu} \to \mathcal{D}_{\mu}$$

wobei gefordert wird:

$$\mathcal{D}'_{\mu}\psi'(x) = U(x)\mathcal{D}_{\mu}\psi(x)$$

 $\Rightarrow \bar{\psi} i \gamma^{\mu} \mathcal{D}_{\mu} \psi$ und $(\mathcal{D}_{\mu} \phi^{\dagger}) (D^{\mu} \phi)$ sind invariant.

Ansatz:

$$\mathcal{D}_{\mu} = \partial_{\mu} - ig\mathcal{W}_{\mu}(x)$$

g: Konstante. $\mathcal{W}_{\mu}(x): n \times n$ -Matrix, entwickeln nach $T_a: \mathcal{W}_{\mu}(x) = T_a W^a_{\mu}(x)$ mit N Vektorfeldern: W^a_{μ} , (a = 1, ..., N): **Eichfelder** Bedingung:

$$\mathcal{D}'_{\mu}\psi'(x) = U(x)\mathcal{D}_{\mu}\psi(x)$$

mit $\mathcal{D}'_{\mu} = \partial_{\mu} - ig \mathcal{W}'_{\mu}$. Zu klären bleibt: Was ist \mathcal{W}'_{μ} ?

$$(\partial_{\mu} - ig\mathcal{W}')U\psi = U(\partial_{\mu} - ig\mathcal{W}_{\mu})\psi \quad \forall\psi$$

$$\mathcal{W}'_{\mu} = U\mathcal{W}_{\mu}U^{-1} - \frac{i}{g}(\partial_{\mu}U)U^{-1} \qquad (*)$$

Lokale nicht-abelsche Eichtransformation:

$$\psi \to \psi' = U\psi$$
$$\mathcal{W}_{\mu} \to \mathcal{W}'_{\mu} = U\mathcal{W}_{\mu}U^{-1} - \frac{i}{g}(\partial_{\mu}U)U^{-1}$$

Eichgruppe: Gruppe der Eichtransformationen Eichinvarianz: Invarianz unter Eichtransformationen

infinitesimal: $U = 1 + iT_a\Theta_a$

$$(*) \Rightarrow W_{\mu}^{\prime a} = W_{\mu}^{a} + \underbrace{\frac{1}{g}}_{\substack{analog\\abelscher\\Fall}} \partial_{\mu}\Theta_{a} + \underbrace{f_{abc}W_{\mu}^{b}\Theta_{c}}_{\substack{neuer nicht-abelscher\\Term}}$$

Substitution $\partial_{\mu} \to \mathcal{D}_{\mu}$ im \mathcal{L}_0 induziert Wechselwirkung:

Spin $\frac{1}{2}$

$$\mathcal{L}_{0} = \bar{\psi}i\gamma^{\mu}\partial_{\mu}\psi$$
$$\rightarrow \bar{\psi}i\gamma^{\mu}(\partial_{\mu} - ig\mathcal{W}_{\mu}\psi) = \mathcal{L}_{0} + \underbrace{\dot{g}\bar{\psi}\gamma^{\mu}\mathcal{W}_{\mu}\psi}_{=\mathcal{L}_{int}}$$

N Ströme:

$$j_a^{\mu} = \sum_{k,l} (\bar{\psi}_k \gamma^{\mu} \psi_l) (T_a)_{kl} = (\bar{\psi}_1, \dots, \bar{\psi}_n) (T_a) \gamma^{\mu} \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$$

 $\mathbf{Spin} \ \mathbf{0}$

(iii) Dynamik der W-Felder: $\overline{\text{Zusätzlicher Term } \mathcal{L}_W}$ (eichinvariant!) \rightarrow Dynamik der W-Felder (Bewegungsgleichung, Propagatoren)

$$\sum_{a} (\partial_{\mu} W_{\nu}^{a} - \partial_{\nu} W_{\mu}^{a})^{2} \qquad : \text{ nicht eichinvariant}$$

Ansatz: $\begin{aligned}
\mathcal{F}_{\mu\nu} &= \mathcal{D}_{\mu}\mathcal{W}_{\nu} - \mathcal{D}_{\nu}\mathcal{W}_{\nu} = \\
&= \partial_{\mu}\mathcal{W}_{\nu} - \partial_{\nu}\mathcal{W}_{\mu} - ig[\mathcal{W}_{\mu}, \mathcal{W}_{\nu}] = \\
&= \frac{i}{g}[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}] \equiv \\
&\equiv F_{\mu\nu}^{a}T_{a}
\end{aligned}$

Eichtransformation: $\mathcal{W}_{\mu} \to \mathcal{W}'_{\mu}, \mathcal{D}_{\mu} \to \mathcal{D}'_{\mu}$ $\mathcal{D}'_{\mu}\mathcal{D}'_{\nu} = \mathcal{D}'_{\mu}UU^{-1}\mathcal{D}'_{\nu} = U\mathcal{D}_{\mu}U^{-1}(U\mathcal{D}_{\nu}U^{-1}) = U(\mathcal{D}_{\mu}\mathcal{D}_{\nu})U^{-1}$ $\Rightarrow \mathcal{F}_{\mu\nu} \to \mathcal{F}'_{\mu\nu} = U\mathcal{F}_{\mu\nu}U^{-1}$

$$\Rightarrow Tr(\mathcal{F}_{\mu}\mathcal{F}^{\mu\nu}) \to Tr(\mathcal{F}_{\mu\nu'\mathcal{F}'^{\mu\nu}}) =$$

$$= Tr(U\mathcal{F}_{\mu\nu}U^{-1}U\mathcal{F}^{\mu\nu}U^{-1}) = Tr(U\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}U^{-1}) =$$

$$= Tr(\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}) \qquad \text{invariant}$$

Daher kann man ansetzen:

$$\mathcal{L}_W = -\frac{1}{2} Tr(\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}) = -\frac{1}{4} \sum_a \mathcal{F}^a_{\mu\nu} F^{a,\mu\nu}$$

 \mathcal{L}_W

$$F^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f_{abc} W^b_\mu W^c_\nu$$

benutzt wurde die Normierung:

$$\begin{aligned} Tr(T_aT_b) &= \frac{1}{2}\delta_{ab} \\ &= -\frac{1}{4}(\partial_{\mu}W_{\nu}^a - \partial_{\nu}W_{\mu}^a)^2 - & a \\ &- \frac{1}{2}gf_{abc}(\partial_{\mu}W_{\nu}^a - \partial_{\nu}W_{\mu}^a)W^{b,\mu}W^{c,\nu} - & b \\ &- \frac{1}{4}g^2f_{abc}f_{ade}W_{\mu}^bW_{\nu}^cW^{d,\mu}W^{e,\nu} & e \\ \end{aligned}$$

neue Kopplungen: Selbst-Kopplung des Eichfeldes.

Mathematischer Einschub: Darstellung von Gruppen

Gruppe $G, g \in G$ mit $g_1 \circ g_2$ Verknüpfung *n*-dimensionale Darstellung:

$$\begin{array}{rcl} G & \to & \mathrm{Matrizen}, n \times n \\ g & \to & D(g) \mathrm{\ mit\ } D(g_1 \circ g_2) = D(g_1) D(g_2) \end{array}$$

Beispiel: Drehgruppe SO(3) in 3 Dimensionen

Generatoren: f_k , $[f_k, f_l] = i\epsilon_{klm}f_m$ $D = e^{i\alpha_k f_k}, f_k: (2j+1) \times (2j+1)$ -Matrizen mit $j = 0, \frac{1}{2}, 1, \frac{3}{2}, ...$ (gleiche Lie-Algebren wie SU(2)) Speziell für j = 1: 3-dimensionale Darstellung, 3 Generatoren \rightarrow adjungierte Darstellung

SU(n): \overline{N} Generatoren $T_1, ..., T_N$ mit Vertauschungsrelation

$$[T_a, T_b] = i f_{abc} T_c$$

m-dimensionale Darstellung: $T_a \rightarrow D(T_a)$ ist $m \times m$ -Matrix mit gleicher Vertauschungsrelation. Falls m = N, spricht man von einer adjungierten Darstellung. $(T_a)_{bc} = i f_{abc}$ in adjungierter Darstellung.

Die **definierende Darstellung** von SU(n) durch $n \times n$ -Matrizen (minimale Darstellung) heißt auch Fundamental-Darstellung. Für die Eichtheorie, basierend auf SU(2) und SU(3) gilt:

- Fermionen in der Fundamentaldarstellung
- Eichbosonen in der adjungierten Darstellung

b

Ergänzende Bemerkungen

 (i) physikalische Bedeutung der nicht-abelschen Eichtheorien: Beschreibung der fundamentalen Wechselwirkungen.

Eichtheorien sind **renormierbar**, d.h. über Born-Approximation hinaus möglich.

Grundsätzliches Problem einer QFT: Schleifendiagramme sind divergente Integrale \Rightarrow "*cut-off*" Γ nötig. Physik muß von Γ abhängig sein. In renormierbaren Theorien: Γ fällt heraus, wenn die Parameter der Theorie durch experimentelle Meßgrößen festgelegt werden. (in der QED: e, m)

$$\begin{array}{rcl} Me \& gr{\ddot{o}} \& en & \stackrel{\Gamma}{\longrightarrow} & Parameter & \stackrel{\Gamma}{\longrightarrow} & and ere & Me \& gr{\ddot{o}} \& en \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$$

(ii) In Schleifendiagrammen mit Bosonlinien, z.B. ~ gibt es un-

physikalische Polarisationen der W_{μ} -Bosonen:

2 transversale
$$+$$
 1 longitudinale $+$ 1 zeitartig

unphysikalisch

in der Eichung mit Propagator $\sim ig_{\mu\nu}/q^2$. Diese müssen kompensiert werden durch Hilfsfelder, die an die W-Bosonen koppeln.

Man nennt diese Hilfsfelder "Geister" (Faddeev-Popov-Geister)

2.3 Formulierung der QCD

Quark-Felder: u,d,s,\ldots Dirac-Felder

6 Flavour-Freiheitsgrade (Ladung, Generation, ...)

Für jeden Flavour-Freiheitsgrad: Dirac-Feld. Weiterer Freiheitsgrad: Colour pro Flavour: 3 Colour-Freiheitsgrade

Pro Flavour: $\psi(x)$ Triplett $\begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$

<u>Jetzt</u>: Nur ein Flavour!

Jetzt: Nur ein Flavour!

$$\mathcal{L}_0 = \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi$$
globale SU(3) Symmetrie, Generatoren: $T_a = \frac{1}{2}\lambda_a, a = 1, ..., 8 \ (N = 8)$

$$U = e^{i\theta_a/2\lambda_2}$$

lokale SU(3) Symmetrie ($\hat{=}$ lokale Eichtransformation) $\theta_a(x), a = 1, ..., 8$

$$\partial_{\mu} \to \mathcal{D}_{\mu} - ig_S \underbrace{T_a}_{W_{\mu}} W^a_{\mu}$$

8 Vektorfelder, $W^a_\mu \equiv G^a_\mu$ Gluon-Felder

Г

$$\begin{aligned} \mathcal{L}_0 &\to \quad \bar{\psi}i\gamma^{\mu}(\partial_{\mu} - ig_S W_{\mu})\psi \\ &= \quad \mathcal{L}_0 + g_S \bar{\psi}\gamma^{\mu}T_a G^a_{\mu}\psi \\ &= \quad \mathcal{L}_0 + g_S \underbrace{\bar{\psi}\gamma^{\mu}T_a}_{=j^{\mu}_{\mu}} \psi G^a_{\mu} \end{aligned}$$

 g_S : Kopplungskonstante der starken WW. Üblicherweise $\alpha_s=\frac{g_S^2}{4\pi}$ "Feinstrukturkonstante" der starken Wechselwirkung.

 $\ddot{a} u \\ \beta ere \ Quark linien: \quad wie \ bisher, \ zus \\ \ddot{a} t z lich \ Colour-Index$ äußere Gluon-Linien: $~\epsilon^a_\mu$ wie Photon (transversal), da $m_G=0$ Damit sind Quark-Gluon-Prozesse beschreibbar (perturbative QCD)!

Beispiele

z.B. σ_{4jet} : σ_{3jet} : $\sigma_{2jet} \implies \alpha_S$ exp.

2.3. FORMULIERUNG DER QCD

Genaueste α_S Messungen auf der Z-Resonanz (LEP)

$$\alpha_S(M_Z) \approx 0.12$$
 $[\alpha_{\text{QED}} = \frac{1}{137} = 0,0073]$

- (ii) <u>Prozesse an Hadron-Collidern</u> Tevatron: $p-\bar{p}$; $\sqrt{S} = 2$ TeV LHC: p-p; $\sqrt{S} = 14$ TeV
 - a) Jet-Erzeugung:

b) Top-Quark-Erzeugung am Tevatron:

 $m_{top} \approx 172 \text{ Gev}$ (172, 6 ± 1, 4 GeV)

hauptsächlich:

 \mathcal{M} für $q\bar{q} \to t\bar{t}$

$$|\mathcal{M}|^2 = \mathcal{M} \cdot \mathcal{M}^* \sim \sum_{a,b} (T_a)_{kl} (T_a)_{jn} \underbrace{(T_b)_{kl}^*}_{(T_b)_{lk}} \underbrace{(T_b)_{jn}^*}_{(T_b)_{nj}}$$

Über j, n Summieren und über k, l Mitteln ergibt:

$$|\mathcal{M}|^{2} = \frac{1}{3} \cdot \frac{1}{3} \sum_{a,b} \sum_{k,l} \sum_{j,n} (T_{a})_{kl} (T_{b})_{lk} (T_{a})_{jn} (T_{b})_{nj}$$
$$= \frac{1}{9} \sum_{a,b} \operatorname{Tr}(T_{a}T_{b}) \cdot \operatorname{Tr}(T_{a}T_{b})$$
$$= \frac{1}{9} \sum_{a,b} \frac{1}{2} \delta_{ab} \cdot \frac{1}{2} \delta_{ab} = \frac{1}{9} \cdot \frac{8}{4} = \frac{2}{9}$$

Berechnung des Wirkungsquerschnitts:

$$\sigma_{q\bar{q}\to t\bar{t}} = \frac{4\pi\alpha_S^2}{3s} + \frac{2}{9}\sqrt{1 - \frac{4m^2}{s}}(1 + \frac{2m^2}{s})$$

Um den Wirkungsquerschnitt für $p-\bar{p}$ zu bekommen, muß mit den Quark-Dichten gefaltet werden und über die verschiedenen Quarks summiert werden:

$$\sigma(p\bar{p} \to t\bar{t}) = \sum_{q} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \left[q^{p}(x_{1})\bar{q}^{\bar{p}}(x_{2}) + (x_{1} \leftrightarrow x_{2}) \right] \cdot \sigma_{q\bar{q} \to t\bar{t}}(x_{1}x_{2}S)$$

wobe
i $S=(p+\bar{p})^2,\,s=x_1x_2S$ Mit den Variablen $\tau=x_1x_2$ hat man die Form

$$\sigma(p\bar{p} \to t\bar{t}) = \int_{\tau_0}^1 d\tau \; \frac{d\mathcal{L}}{d\tau}(\tau) \sigma_{q\bar{q} \to t\bar{t}}(\tau S)$$

$$\frac{d\mathcal{L}}{d\tau}(\tau) = \int_{\tau}^{1} \frac{dx}{x} \sum_{q} \left[q^{p}(x)\bar{q}^{\bar{p}}(\frac{\tau}{x}) + \bar{q}^{p}(x)q^{\bar{p}}(\frac{\tau}{x})\right]$$

Dies nennt man die Parton-Luminosität.

Anmerkung: Es gibt noch weitere Beiträge aus der Gluon-Fusion

mit der Gluon-Dichte G(x) im Proton.

Klein beim Tevatron, dominant beim LHC wegen der höheren Energie $\sqrt{S} = 14$ TeV.

2.4 Scaling-Verletzung und Parton-Verteilung

tief-inelastische Streuung:

$$\frac{d^2 \sigma^{eP}}{dx dQ^2} = \frac{2\pi \alpha^2}{Q^4} [1 + (1 - y)^2] \frac{F_2(x)}{x} \sim \underbrace{F_2(x) = \sum_q q(x) Q_q^2}_{\text{von } Q^2 \text{ unabh.} \to Scaling}$$

Parton-Modell:

enthält die Streuung des virtuellen Photons γ^* am Quark q mit Impuls p = xP. $q^2 = -Q^2 \neq 0$: Masse des virtuellen Photons

Spin-Summation:

$$\begin{aligned} |\mathcal{M}|^2 &= -e^2 Q_q^2 \cdot \frac{1}{2} \operatorname{Tr}(\not\!\!\!p' \gamma_\mu \not\!\!\!p \gamma^\mu) = e^2 Q_q^2 \cdot \operatorname{Tr}(\not\!\!\!p' \not\!\!p) = \\ &= e^2 Q_q^2 \cdot 4(pp') = e^2 Q_q^2 \cdot 2Q^2 \end{aligned}$$

$$d\sigma = \frac{(2\pi)^{10}}{4(pq)} \overline{|\mathcal{M}|^2} \cdot \left[\frac{1}{(2\pi)^{3/2}}\right]^3 \cdot 2\underbrace{\delta^4(p'-p-q)\frac{d^3p'}{2p'^0}}_{\delta^4(p'-p-q)\delta(p'^2)d^4p'}$$

(alle Quarks wurden als masselos angenommen)
über p^\prime integrieren ergibt:

$$\sigma(\gamma^* q) = \frac{2\pi}{2 \cdot (2pq)} \overline{|\mathcal{M}|^2} \cdot \delta((p+q)^2) = \frac{2\pi e^2 Q_q^2}{(2pq)} \cdot Q^2 \cdot \delta(2pq - Q^2)$$
$$\sigma(\gamma^* q) = 8\pi^2 \alpha Q_q^2 \delta(2pq - Q^2)$$

mit $\alpha = \frac{e^2}{4\pi}$

WQ für $\gamma^* P$: p = xP

 $f(x)\equiv q(x)$ Bezeichnung für die Verteilungsfunktion des Quarks q.

$$\sigma(\gamma^* P) = \int_0^1 dx \ f(x)\sigma(\gamma^* q) = \int_0^1 dx \ f(x)\underbrace{\delta(2xqP - Q^2) \cdot 8\pi^2 \alpha Q_q}_{\delta(x - \frac{Q^2}{2qP}) \cdot \frac{1}{2qP}}$$
$$\sigma(\gamma^* P) = \frac{8\pi^2 \alpha}{2qP}Q_q^2 \cdot f(x), \qquad x = \frac{Q^2}{2qP}$$

Anmerkung: $\frac{F_2(x)}{x} \sim \sum_q Q_q^2 f_q(x) \sim \sigma(\gamma^* P)$

WQ für $\gamma^* q$ mit QCD: $\gamma^* q \rightarrow gq$

- (a): Quark im t-Kanal
- (b): Quark im s-Kanal

$$\mathcal{M} = \mathcal{M}_{(a)} + \mathcal{M}_{(b)}$$

(analag zu Compton-Streuung)

Kinematik

$$\hat{s} = (p+q)^2 = 2pq - Q^2$$
$$\hat{t} = (p-k)^2 = -2pk$$
$$\hat{u} = (p-p')^2 = -2pp'$$

wegen Impuls-Erhaltung ist

$$\hat{s} + \hat{t} + \hat{u} = -Q^2$$

im CMS:

 $\mathcal{M}_{(a)} \text{ enthält den Quarkpropagator } \frac{p - k}{(p-k)^2} \sim \frac{1}{\hat{t}}$ $\mathcal{M}_{(b)} \text{ enthält den Quarkpropagator } \frac{p + g}{(p+q)^2} \sim \frac{1}{\hat{s}}$ daher $\mathcal{M}_{(a)} \sim \frac{1}{\hat{t}}$ (wird singulär für $\hat{t} \to 0$, d.h. $\theta \to 0$), $\mathcal{M}_{(b)} \sim \frac{1}{\hat{s}}$

Für die Emission von Gluonen in Vorwärtsrichtung (d.h. kleine θ) dominiert $\mathcal{M}_{(a)}$: kollineare Emission

$$|\mathcal{M}|^2 = |\mathcal{M}_{(a)} + \mathcal{M}_{(b)}|^2 \simeq |\mathcal{M}_a|^2 + 2\operatorname{Re}\left(\mathcal{M}_a^*\mathcal{M}_b\right)$$

 $(|\mathcal{M}_b|^2 \text{ kann vernächlässigt werden})$

Im Folgenden wird nur die Emission von Gluonen mit kleinen θ betrachtet. $\hat{t} \ll \hat{s}, |\hat{u}|, Q^2: \hat{s} + \hat{t} + \hat{u} = -Q^2$

$$\hat{s} + \hat{u} \simeq -Q^2$$

mit $\hat{u} = -(\hat{s} + Q^2)$. Jetzt summieren/mitteln:

$$\overline{|\mathcal{M}|^2} = \frac{1}{2} \sum_{\text{Spins}} \frac{1}{3} \sum_{\text{Colour}} \overline{|\mathcal{M}|^2}$$

Colour-Summation

(am Beispiel von $|\mathcal{M}_a|^2$, $\mathcal{M}_b \cdot \mathcal{M}_a^*$ analog)

$$|\mathcal{M}_{(a)}|^2 \sim (T_a)_{jl} (T_a)_{jl}^* = (T_a)_{jl} (T_a)_{lj}$$

über a, j summieren und über l mitteln:

$$\overline{|\mathcal{M}_a|^2} = \frac{1}{3} \sum_{l,j} \sum_a (T_a)_{jl} (T_a)_{lj} = \frac{1}{3} \sum_a Tr(T_a \cdot T_a) = \frac{1}{3} \sum_a \frac{1}{2} = \frac{1}{3} \cdot \frac{8}{2} = \frac{4}{3}$$

$$\boxed{\text{Colour-Faktor} = \frac{4}{3}}$$

Die restliche Spin-Summation erfolgt mit den üblichen Techniken der Dirac-Algebra und Spurbildung mit anschließender Kontraktion der 4-Impulse, sowie Ersetzen der Skalarprodukte aus 4-Impulsen durch \hat{s} , \hat{t} , \hat{u} und Q^2 . Ergebnis:

$$\overline{|\mathcal{M}|^2} = \overline{|\mathcal{M}_{(a)}|^2} + 2\operatorname{Re}\overline{\mathcal{M}_{(a)}^*\mathcal{M}_{(b)}} =$$

$$= \frac{4}{3} \cdot Q_q^2 e^2 g_s^2 \cdot 4 \left[-\frac{\hat{s}}{\hat{t}} + \frac{2\hat{u}Q^2}{\hat{s}\hat{t}} \right] =$$

$$= \frac{4}{3} \cdot Q_q^2 e^2 g_s^2 \cdot 4 \cdot \left(\frac{1}{-\hat{t}}\right) \left[\hat{s} + \frac{2Q^2(\hat{s} + Q^2)}{\hat{s}} \right]$$

(verwendet: $\hat{u} = -(\hat{s} + Q^2)$)

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi^2 \cdot 4(pq) \cdot 8} \overline{|\mathcal{M}|^2} = \frac{\alpha \alpha_s Q_q^2}{(2pq)} \cdot \frac{4}{3} \cdot \frac{1}{(-\hat{t})} \left[\hat{s} + \frac{2Q^2(\hat{s} + Q^2)}{\hat{s}} \right]$$

mit $\frac{e^2}{4\pi} = \alpha$, $\frac{g_s^2}{4\pi} = \alpha_s$ Betrachte k längs p, mit kleinem Transversalimpuls p_T :

ergibt die Darstellung b
zgl. der p_T^2 -Verteilung. Aus der Kinematik erhält man wegen $\hat{u} = -(\hat{s} + Q^2)$ bei kleinen $|\hat{t}|$

$$p_T^2 = \frac{\hat{s}\hat{t}\hat{u}}{(\hat{s} + Q^2)^2} \simeq \frac{\hat{s}(-\hat{t})}{\hat{s} + Q^2}$$

.
die Beziehung

$$p_T^2 = \frac{\hat{s}\hat{t}\hat{u}}{(\hat{s}+Q^2)^2}$$

im CMS: $p^0 + q^0 = \sqrt{\hat{s}}$ und $\vec{p} + \vec{q} = 0$ $(p^2 = 0, q^2 = -Q^2)$. Also:

$$\begin{array}{ll} (q^0)^2 &= (\sqrt{\hat{s}} - p^0)^2 = \hat{s} - 2p^0\sqrt{\hat{s}} + (p^0)^2 \\ &= \vec{q}^2 - Q^2 = \vec{p}^2 - Q^2 = (p^0)^2 - Q^2 \end{array} \right\} \Rightarrow -Q^2 = \hat{s} - 2p^0\sqrt{\hat{s}}$$

$$p^0 = \frac{\hat{s} + Q^2}{2\sqrt{\hat{s}}}$$

$$\hat{t} = -2k^0 p^0 (1 - \cos\theta) = -2 \cdot \frac{\sqrt{\hat{s}}}{2} \cdot \frac{\hat{s} + Q^2}{2\sqrt{\hat{s}}} (1 - \cos\theta) = -\frac{\hat{s} + Q^2}{2} (1 - \cos\theta)$$

daraus: $1 - \cos \theta = \frac{2(-\hat{t})}{\hat{s}+Q^2}, \cos \theta = 1 + \frac{2(+\hat{t})}{\hat{s}+Q^2}$

$$\sin^2 \theta = 1 - \cos^2 \theta = -\left(\frac{4\hat{t}}{\hat{s} + Q^2} + \frac{4\hat{t}^2}{(\hat{s} + Q^2)^2}\right) =$$
$$= -4\hat{t}\frac{\hat{s} + Q^2 + \hat{t}}{(\hat{s} + Q^2)^2} = -4\hat{t}\frac{(-\hat{u})}{(s^2 + Q^2)^2} =$$
$$= \frac{4\hat{t}\hat{u}}{(\hat{s} + Q^2)^2}$$
$$\boxed{p_T^2 = \frac{\hat{s}}{4}\sin^2 \theta = \frac{\hat{s}\hat{t}\hat{u}}{(\hat{s} + Q^2)^2}}$$

Wegen $\frac{d\sigma}{dp_T^2} \sim \frac{1}{(-t)} \sim \frac{1}{p_T^2} \cdot \{...\}$ hat man eine $\frac{1}{p_T^2}$ Singularität im Wirkungsquerschnitt. Im Folgenden werden nur Terme mitgenommen, die zu dieser $\frac{1}{p_T^2}$ -Singularität beitragen (\equiv dominant für kleine p_T), d.h. im Ausdruck $\{...\}$ wird $p_T = 0$ gesetzt zur weiteren Berechnung.

(Impulse kollinear, p_T vernachlässigbar)

$$k = (1 - z)p$$

$$(p-k+q)^2 = p'^2 = 0 = (p-(1-z)p+q)^2 = (zp+q)^2 = 2zpq - Q^2$$

$$z = \frac{Q^2}{2pq} = \frac{Q^2}{\hat{s} + Q^2}$$
$$\hat{s} = Q^2 \frac{1-z}{z} \qquad \hat{s} + Q^2 = \frac{Q^2}{z}$$

$$\begin{aligned} \frac{d\sigma}{dp_T^2} &= \frac{4\pi\alpha\alpha_s Q_q^2}{(2pq)} \cdot \frac{4}{3} \cdot \underbrace{\frac{1}{p_T^2} \cdot \frac{1}{\hat{s} + Q^2}}_{\substack{= \frac{1}{p_T^2} \cdot \frac{1}{\hat{s} + Q^2}} \left[\hat{s} + \frac{2Q^2(\hat{s}Q^2)}{\hat{s}} \right]}_{\substack{= \frac{1}{p_T^2} \cdot \frac{1}{\hat{s} + Q^2} \cdot [\dots] \\ = \frac{1}{p_T^2} \cdot \frac{1 + z^2}{1 - z}} \\ \frac{d\sigma}{dp_T^2} &= \underbrace{\frac{8\pi^2 \alpha Q_q^2}{(2pq)}}_{\substack{= :\hat{\sigma}_0}} \cdot \frac{1}{p_T^2} \cdot \frac{\alpha_S}{2\pi} \cdot \underbrace{\frac{4}{3} \cdot \frac{1 + z^2}{1 - z}}_{\substack{= :P_{qq}(z)}} \end{aligned}$$

 $Bezeichnung: \ Quark-Quark \ {\bf Splitting-Funktion}$

$$P_{qq}(z) = \frac{4}{3} \cdot \frac{1+z^2}{1-z}$$
$$\frac{d\sigma}{dp_T^2} = \hat{\sigma}_0 \cdot \frac{\alpha_S}{2\pi} P_{qq}(z) \cdot \frac{1}{p_T^2}$$

Integration über $p_T^2 \to \sigma(\gamma^* q)$

$$\sigma(\gamma^* q) = \int_0^{p_T^2(max)} dp_T^2 \, \frac{d\sigma}{dp_T^2} \qquad \text{divergent}$$

Cut-off μ^2 für untere Grenze: $(p_T^2)_{min} = \mu^2$ (willkürlich, z. B. m_q , falls Quark, mit kleiner Masse m_q) $(p_T^2)_{max} = \frac{\hat{s}}{4} \sin^2 \theta|_{max} = \frac{\hat{s}}{4} = Q^2 \cdot \frac{(1-z)}{4z}$ Damit: $f^{(p_T^2)_{max}} dn^2 = f^{(Q^2)} (Q^2) = f^{(1-z)}$

$$\int_{(p_T^2)_{min}}^{(p_T)_{max}} \frac{dp_T^2}{p_T^2} = \log\left(\frac{Q^2}{\mu^2}\right) + \log\left(\frac{1-z}{4z}\right)$$
$$\sigma(\gamma^* q) = \hat{\sigma}_0 \cdot \frac{\alpha_s}{2\pi} P_{qq}(z) \left[\log\frac{Q^2}{\mu^2} + \log\frac{1-z}{4z}\right]$$

 $P_{qq}:$ Splitting von Quark $q \rightarrow$ Quark mit Impulsanteilz.

~ Wahrscheinlichkeit, dass ein Quark mit Impuls zp ("Tochter-Quark") aus einem "Mutter-Quark" mit Impuls p stammt.

Übergang zum Hadron: $\sigma(\gamma^* P)$

$$x = zy, \qquad z = \frac{x}{y}$$
$$2qp = 2qyP = y \cdot 2qP$$

$$f(\gamma^* P) = \int_{-1}^{1} du f(u) \sigma(\gamma^* a) =$$

$$\begin{split} \sigma(\gamma \ P) &= \int_{x} dy \ f(y)\sigma(\gamma \ q) = \\ &= \int_{x}^{1} dy \ f(y) \frac{8\pi^{2}\alpha Q_{q}^{2}}{y \cdot (2qP)} \cdot \frac{\alpha_{s}}{2\pi} P_{qq}(z) \cdot \left[\log \frac{Q^{2}}{\mu^{2}} + \dots\right] = \\ &= \underbrace{\frac{8\pi^{2}\alpha Q_{q}^{2}}{(2qP)}}_{\text{ohne QCD}} \cdot \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{dy}{y} \ f(y) P_{qq}\left(\frac{x}{y}\right) \left[\log \frac{Q^{2}}{\mu^{2}} + \dots\right] = \\ &= \sigma_{0} \cdot \underbrace{\frac{\alpha_{s}}{2\pi} \left[\log \frac{Q^{2}}{\mu^{2}} + \dots\right] \int_{x}^{1} \frac{dy}{y} \ f(y) P_{qq}\left(\frac{x}{y}\right)}_{=\Delta f(x,Q^{2})} \end{split}$$

Faktorisierung: $\underbrace{\sigma_0(\gamma^* P)}_{\substack{\text{große Skala} \\ Q^2, \text{ harter} \\ \text{Prozess,} \\ \text{perturbativ} \\ \text{Zusammen mit dem Beitrag niedrigster Ordnung:}} \cdot \underbrace{\Delta f(x, Q^2)}_{\substack{\text{kleine Skala } p_T^2, \\ \text{nicht} \\ \text{perturbativer} \\ \text{Anteil} \\ \text{Anteil} \\ \text{State of the state of the$

$$\sigma(\gamma^* P) = \underbrace{\sigma_0}_{\substack{\text{niedrigste} \\ \text{Ordnung}}} \cdot \underbrace{\left[f(x) + \Delta f(x, Q^2)\right]}_{=f(x, Q^2)}$$

Effekte der QCD \rightarrow Modifikation der Parton-Verteilung.

Quark-Verteilung: $q(x,Q^2) \equiv f(x,Q^2)$ (urspr. Notation)

$$q(x,Q^2) = q(x) + \frac{\alpha_s}{2\pi} \left[\log \frac{Q^2}{\mu^2} \right] \int_x^1 \frac{dy}{y} q(y) P_{qq}\left(\frac{x}{y}\right)$$

Scaling-Verletzung:

$$\Rightarrow F_2 = x \sum_q Q_q^2(x, Q^2) \equiv F_2(x, Q^2)$$

Experimentelle Bestimmung bei $Q_0^2 {:}\; q(x,Q_0^2)$

$$q(x,Q^2) - q(x,Q_0^2) = \frac{\alpha_s}{2\pi} \log \frac{Q^2}{Q_0^2} \int_x^1 \frac{dy}{y} \ q(y) P_{qq}\left(\frac{x}{y}\right) \tag{1}$$

- Vorhersagen für $Q^2 \neq Q_0^2$
- unphysikalische Größe μ^2 fällt heraus

Systematischer Weg: Evolutions-Gleichungen

$$\frac{\partial}{\partial Q^2} q(x, Q^2) = \frac{\alpha_s}{2\pi} \cdot \frac{1}{Q^2} \cdot \int \dots$$
$$Q^2 \frac{\partial q(x, Q^2)}{\partial Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \ q(x, Q^2) P_{qq}\left(\frac{x}{y}\right)$$

Dies ist die Altarelli-Parisi-Gleichung

(1) ist 1. Näherung bei iterativer Lösung mit Anfangsbedingung $q(x, Q_0^2)$. Iterieren \rightarrow Aufsummieren

Beachte: ursprüngliche Verteilung q(x) ist nicht messbar, nur $q(x) + \Delta q(x,Q^2)$

Singularität bei kollinearen Emission verschwindet in der exp-Verteilung

$$q(x, Q_0^2) = q(x) + \Delta q(x, Q_0^2)$$

Weiterer Beitrag (von QCD stammend): $\gamma^* g \rightarrow q\bar{q}$

Gluon-Splitting dominiert für kollineare Impulse $\vec{p}\sim \vec{k}$

Beschrieben durch die Gluon-Quark Splitting-Funktion $P_{qg}(z)$ (Quark q aus Gluon g, Quarkimpuls z) Es ergeben sich 2 Graphen:

Analoge Rechnung, nur andere Colour-Summe:

$$\begin{vmatrix} a & \text{cocc} & j \\ l & \end{vmatrix}^2 \rightarrow \frac{1}{8} \sum_a \cdot \sum_{j,l} (T_a)_{jl} (T_a)_{jl}^* \\ &= \frac{1}{8} \sum_a Tr(T_a T_a) = \frac{1}{8} \sum_a \frac{1}{2} = \frac{1}{8} \cdot \frac{1}{2} \cdot 8 = \frac{1}{2} \\ \hline P_{qg}(z) = \frac{1}{2} [z^2 + (1-z)^2] \end{aligned}$$

liefert nach Integration über p_T^2 :

$$\sigma(\gamma^* g) = \hat{\sigma}_0 \cdot \frac{\alpha_s}{2\pi} P_{qg}(z) \left[\log \frac{Q^2}{\mu^2} + \dots \right]$$

hadronischer Beitrag: $\sigma(\gamma^*P)$ gemäß

$$\sigma(\gamma^* P) = \sigma_0 \cdot \underbrace{\frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} G(y) P_{qg}\left(\frac{x}{y}\right) \log \frac{Q^2}{\mu^2} + \dots}_{=\Delta q(x,Q^2) \text{von Gluon-Splitting}}$$

mit G(y): Gluon-Dichte

Systematisch: gekoppelte Gleichungen (auch DGLAP: Dokshitzer, Gribov, Lipatov, AP)

$$Q^{2} \frac{\partial q(x,Q^{2})}{\partial Q^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[P_{qq}\left(\frac{x}{y}\right) q(y,Q^{2}) + P_{qg}\left(\frac{x}{y}\right) G(y,Q^{2}) \right]$$
$$Q^{2} \frac{\partial G(x,Q^{2})}{\partial Q^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[P_{gq}\left(\frac{x}{y}\right) q(y) + P_{gg}\left(\frac{x}{y}\right) G(y,Q^{2}) \right]$$

Anfangsbedingungen aus experimentellen Daten.

Lösung perturbativ (iterativ) oder numerisch. Lösung liefert einen Satz von $G(x,Q^2)$ und $q_i(x,Q^2) \; [i=u,d,s]$

$\begin{array}{c} \mathbf{Splitting}\text{-}\mathbf{Funktionen} \\ p \quad zp \end{array}$

$$P_{qq}(z) = \frac{4}{3} \cdot \frac{1+z^2}{1-z}$$

$$p \quad zp$$

$$P_{qg}(z) = \frac{1}{2}[z^2 + (1-z)^2]$$

$$p \quad zp \rightarrow$$

$$P_{gq}(z) = \frac{4}{3} \cdot \frac{1+(1-z)^2}{z}$$

$$P_{gg}(z) = 6\left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z)\right]$$

Lösung von DGLAP enthält Aufsummationen:

wichtig:

Die aus Daten und DGLAP bestimmten Verteilungsfunktionen sind universell, d.h. sie gelten bei allen harten partonischen Streuprozessen mit (Proton, Anti-Proton, Neutron, ...) im Anfangszustand.

Beispiele

Tevatron/LHC:

Abbildung 2.1: Partonverteilung

2.5 Laufende Kopplung und asymptotische Freiheit

2.5.1 QED

WW zwischen 2 Ladungen:

Ladung wird modifiziert durch Schleifen-Terme (\sim höhere Ordnung Störungstheorie):

$$\Pi(Q^2) = \frac{\alpha}{3\pi} \sum_f Q_f^2[\log \frac{Q^2}{m_f^2} + (\dots \text{ von } Q^2 \text{ unabh. Terme})]$$

gilt für $|Q^2|>m^2,$ sonst $\Pi(Q^2)\sim \frac{Q^2}{m_f^2}\to 0$ für $Q^2\ll m_f^2.$ Wiederholtes Einsetzten und Summieren:

$$\sim \frac{e^2}{Q^2} [1 + \Pi(Q^2) + \Pi(Q^2)^2 + \dots] = \frac{e^2}{Q^2} \cdot \frac{1}{1 - \Pi(2)}$$
 geometrische Reihe

Effekt:

$$\alpha \to \frac{\alpha}{1 - \Pi(Q^2)} \equiv \alpha(Q^2)$$

²) laufende Kopplung der QED³

z. B. bei $M_t=91: \, \alpha(M_z^2)=\frac{1}{128,8} \, (\sum_f \, \text{mit} \, f=e,\mu,\tau,u,d,\ldots,b,$ ohne top, da $M_z^2 \ll m_t^2)$ Statt $\alpha=\frac{1}{137}$ als Input kann $\alpha(Q_0^2)$ bei einem beliebigen (aber festen) Q_0^2 gewählt werden.

³wächst an mit Q^2 , siehe auch Abbildung 2.2

Abbildung 2.2: laufende QCD-Kopplung

Experiment

$$\alpha(Q_0^2)$$

$$\frac{1}{\alpha(Q^2)} = \frac{1}{\alpha} - \frac{1}{3\pi} \sum_f Q_f^2 (\log \frac{Q^2}{m_f^2} + \dots)$$

$$\frac{1}{\alpha(Q_0^2)} = \frac{1}{\alpha} - \frac{1}{3\pi} \sum_f Q_f^2 (\log \frac{Q_0^2}{m_f^2} + \dots)$$

ergibt:

$$\frac{1}{\alpha(Q^2)} - \frac{1}{\alpha(Q_0^2)} = -\frac{1}{3\pi} \sum_f Q_f^2 \cdot \log \frac{Q^2}{Q_0^2} = -\frac{\beta_0}{4\pi} \log \frac{Q^2}{Q_0^2} \tag{1}$$

wobei

$$\beta_0 = \frac{4}{3} \sum_f Q_f^2 > 0$$

Auflösen nach $\alpha(Q^2)$ ergibt:

(

$$\alpha(Q^2) = \frac{\alpha(Q_0^2)}{1 - \frac{\alpha(Q_0^2)}{4\pi} \beta_0 \log \frac{Q^2}{Q_0^2}}$$
(1')

erfüllt DGL

$$Q^2 \frac{d\alpha(Q^2)}{dQ^2} = \frac{\beta_0}{4\pi} \alpha^2$$

Evolutions gleichung, Renormierung sgruppen-Gleichung (RGE) (1), (1') ist Lösung mit Anfangs beding ung $\alpha(Q_0^2)$. Allgemein lautet die RGE (aus QFT):

$$Q^2 \frac{d\alpha}{dQ^2} = \beta(\alpha)$$

mit der β -Funktion $\beta(\alpha)$, die das Laufen von α bestimmt. $\beta(\alpha)$ kann perturbativ berechnet werden:

$$\beta(\alpha) = \underbrace{\frac{\beta_0}{4\pi}\alpha^2}_{1-\text{Loop}} + \underbrace{\frac{\beta_1}{(4\pi)^2}\alpha^3}_{2-\text{Loop}}$$
$$\Pi^{(2-\text{Loop})} = \frac{\beta_1}{(4\pi)^2}\alpha^2\log Q^2 + \dots$$

Die Lösung der RGE entspricht dem Aufsummieren der geometrischen Reihe $1 + \Pi + \Pi^2 + \dots = \frac{1}{1-\Pi} \stackrel{\circ}{=} Aufsummieren von <math>\alpha^n \log \frac{nQ^2}{Q_0^2}$

Vorzeichen von $\beta(\alpha)$ bestimmt das asymptotische Verhalten von α

2.5.2 QCD

WW zwischen 2 Quarks (starke WW):

Vakuum-Polarisation durch virtuelle Quark-Paare:

Man erhält demnach $\Pi^{(q)}$ aus Π^{QED} durch Ersetzten:

$$\sum_{f=e,\mu,\tau,q} e^2 Q_f^2 \to \sum_q g_s^2 \cdot \frac{1}{2}$$

Also: $\Pi^{(q)}(Q^2) = \frac{\alpha_s}{3\pi} \cdot \frac{1}{2} \sum_q \left(\log \frac{Q^2}{m_q^2 + \dots} \right) = \frac{\alpha_s}{4\pi} \cdot \beta_0^{(q)} \cdot \log Q^2 + (\dots \operatorname{von} Q^2 \operatorname{unabh.})$ mit

- $\beta_0^{(q)} = \frac{4}{3} \sum_q \left(\frac{1}{2}\right) = \frac{4}{3} \cdot \frac{n_f}{2} > 0,$
- n_f : Anzahl der Flavour (≤ 6)
- $(n_f = 5 \text{ für } Q^2 < m_t^2)$

Soweit alles analog zu QED. Es ergäbe sich ein Anwachsen von $\alpha_s(Q^2)$ mit wachsendem Q^2 . Jedoch: $\beta_0 = \beta_0^{(q)} + \beta_0^{(g)}$ mit einem weiteren nicht-abelschen Beitrag von den Gluonen:

Damit:

$$\beta_0 = -11 + \frac{2}{3}n_f$$

 $\begin{array}{l} \rightarrow \beta_0 < 0 \mbox{ für } n_f < \frac{33}{2} \\ \mbox{Da empirisch } n_f \leqslant 6 \mbox{ gilt, ist also } \beta_0 < 0. \end{array}$ Laufende Kopplung der QCD:

$$\alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + \frac{\alpha_s(Q_0^2)}{4\pi}(11 - \frac{2}{3}n_f)\log\frac{Q^2}{Q_0^2}}$$

 $\alpha_s(Q^2) \to 0$ für $Q^2 \to \infty$

starke WW wird schwach für große Q^2 . Diese Eigenschaft wird als "asymptotische Freiheit" bezeichnet und ist eine wesentliche Eigenschaft der QCD. Beispiel:

$$\begin{aligned} \alpha_s(M_z^2) &= 0, 12 \quad M_z = 91 \text{ GeV} \\ \alpha_s(m_\tau^2) &= 0, 34 \quad m_\tau = 1, 8 \text{ GeV} \end{aligned}$$

Bei kleinen Q^2 : $\alpha_s(Q^2)$ wird groß, divergiert für ein bestimmtes $Q^2 = \Lambda^2$:

$$\frac{1}{\alpha_s(\Lambda^2)} = 0 \quad \Leftrightarrow \quad \Lambda^2 = Q_0^2 \exp \frac{-12\pi}{(33 - 2n_f)\alpha_s(Q_0^2)}$$
$$\boxed{\Lambda \simeq (200 \pm 100) \text{ MeV}}$$

Die laufende Kopplungskonstante lässt sich durch Λ ausdrücken, wenn man $\alpha_s(Q_0^2)$ durch Λ substituiert:

$$\underbrace{\frac{1}{\alpha_s(\Lambda^2)}}_{=0} - \frac{1}{\alpha_s(Q_0^2)} = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_f \right) \log \frac{\Lambda^2}{Q_0^2}$$

und damit

$$\frac{1}{\alpha_s(Q^2)} = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_f \right) \log \frac{Q^2}{\Lambda^2}$$

oder aufgelöst nach $\alpha_s(Q^2)$:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\log\frac{Q^2}{\Lambda^2}}$$

Λ bestimmt die Skala, wo die Störungsrechnung nicht mehr anwendbar ist. (zum Vergleich: Π-Masse $m_{\pi} \simeq 140$ MeV) Störungsrechnung für $|Q^2| \gg \Lambda^2$ Die Unsicherheit von Λ hat mehrere Gründe:

- exp. Fehler von $\alpha_s(Q_0^2)$
- Abhängigkeit von der Ordnung der Störungsrechnung
- Abhängigkeit von der Zahl der "aktiven" Flavour, d.h. derjenigen die zum Laufen beitragen.

Für $Q^2 \lesssim \Lambda^2$ sind nicht-perturbative Methoden nötig, wie z. B. Gitter-Approximation, oder chirale Störungsrechnung,...

2.6 QCD-Potentiale und Bindungszustände

2.6.1 QED (als bekanntes Beispiel)

Coulomb-Potential $V_{QED} = \pm \frac{\alpha}{r}$ zwischen zwei Ladungen $(e^-e^- \text{ oder } e^-e^+)$ folgt aus Feynman-Graph mit 1-Photon-Austausch im nicht-relativistischen Limes $|\vec{p}| \ll m(=m_e)$:

 $\begin{array}{l} (\rightarrow \text{ siehe WS } 07/08, \text{ Kap. 3, Mott-WQ}) \\ \mathcal{M} = if, \text{ wobei} \\ f: \text{ Streuamplitude, nicht-relativistisch.} \\ f = -\tilde{V}(\vec{Q}^2) \text{ Fourier-Transformation des Potentials } V(\vec{r}) \\ \text{Da } p^0 = p'^0 \ (\text{im CMS}) \Rightarrow Q^2 = -\vec{Q}^2 = -(\vec{p} - \vec{p}')^2 \\ \Rightarrow f \sim -\frac{e^2}{\vec{Q}^2} = -\tilde{V}(\vec{Q}^2), \int d^3x \ e^{i\vec{Q}\vec{x}} \frac{\alpha}{r} = \frac{e^2}{\vec{Q}^2} = \tilde{V}(\vec{Q}) \\ \text{Jetzt: } e^+e^-: \end{array}$

 $(\bar{v}\gamma^0 v' \text{ statt } \bar{U}'\gamma^0 U, \text{ also } v \leftrightarrow U', v' \leftrightarrow U, \text{ einlaufend/auslaufend})$ Daher:

$$V(r) = -\frac{\alpha}{r}$$

anziehendes Potential zwischen e^- und e^+ erlaubt Bindungszustände aus e^- und e^+ : **Positronium**

analog H-Atom, jedoch mit $m_e \rightarrow \mu_e = \frac{m_e}{2}$ als reduzierte Masse, (2-Teilchenproblem \rightarrow effektives 1-Teilchen-Problem) Feinstruktur durch Spin-Bahn/Spin-Spin-WW:

$$\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0 \qquad \text{Spin-Spin-Kopplung}$$
$$e^- \otimes e^+ = \underbrace{\text{Triplett}}_{\text{Ortho-Positronium}} \oplus \underbrace{\text{Singlett}}_{\text{Para-Positronium}}$$

2.6.2 QCD

• Quark-Quark-Streuung mit 1-Gluon-Austausch im nicht-relativistischer Näherung

$$q \xrightarrow{u, k} u', l \\ Q^2, (a) \\ Q^2, (a) \\ U, j \\ U', n \\ \mathcal{M} = i \frac{g_s^2}{Q^2} (\bar{u}' \gamma^0 u) \cdot (\bar{U} \gamma_0 U) \cdot \underbrace{\sum_a (T_a)_{lk} (T_a)_{nj}}_{\text{Colour-Faktor}}$$

 $\Rightarrow V_{QCD}^{(qq)}$ aus $V_{QED}^{e^-e^-}$ durch $\alpha \to \alpha_s$ und zusätzlicher Colour-Faktor:

$$V^{(qq)} = \frac{\alpha_s}{r} \cdot [\text{Colour-Faktor}]$$

Der Colour-Faktor bestimmt sich aus der Anordnung der Quark-Colour in den 2-Teilchen-Zuständen.

• Quark-Antiquark-Streuung:

$$\mathcal{M} = \underbrace{-}_{\substack{wie \text{ bei}\\e^+e^-}} i \frac{g_s^2}{Q^2} (\bar{u}\gamma^0 u) (\bar{v}\gamma_0 v') \cdot \underbrace{\sum_{a} (T_a)_{lk} (T_a)_{jn}}_{\text{Colour-Faktor, } \neq (qq)}$$
$$\Rightarrow V_{QCD}^{(q\bar{q})} = \frac{\alpha_s}{r} \cdot [\text{Colour-Faktor}]$$

Auch dieser Colour-Faktor bestimmt sich aus der Anordnung der Colour in den 2-Teilchenzuständen, jetzt bestehend aus q und \bar{q} . Dazu bedarf es eines Exkurses in die Produkt-Darstellung der SU(3).

Exkurs: 2-Teilchen-Zustände im Colour-Raum

qq und $q\bar{q}$ Zustände liegen im Produktraum $\mathcal{H}_1 \otimes \mathcal{H}_2$ wobei $\mathcal{H}_{1,2}$: Hilbert-Ram von Teilchen 1,2. Produkt-Zustände: $|\psi_1\rangle |\psi_2\rangle$ oder $|\psi_1\psi_2\rangle$ wobei $|\psi_1\rangle \in \mathcal{H}_1$, $|\psi_2\rangle \in \mathcal{H}_2$ $|u|_{L} = |Spin Bahn\rangle |Colour\rangle$

$$|\psi_{1}\rangle = |\text{Spin},\text{Bahn}\rangle_{1}|\text{Colour}\rangle_{1}$$
$$|\psi_{2}\rangle = |\text{Spin},\text{Bahn}\rangle_{2}|\text{Colour}\rangle_{2}$$
wobei |Colour\rangle = $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \chi_{1,2,3} \equiv |R\rangle, |G\rangle, |B\rangle$ (noue Notation, becaum)

(neue Notation, bequem)

Produktbasis bei $|q\rangle |q\rangle$: $|R\rangle |R\rangle \equiv |RR\rangle$, $|RG\rangle$, $|RB\rangle$, ... (insg. 9 Basiszustände) Die Colour-Basisvektoren $\chi_{1,2,3}$ bzw. $|R\rangle$, $|G\rangle$, $|B\rangle$ sind gemeinsame Eigenvektoren der Operatoren (Generatoren) T_3 und T_8 :

$$T_{3} = \frac{1}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}, \quad T_{8} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$
$$[T_{3}, T_{8}] = 0$$

Man kann sie daher durch ihre Eigenwerte kennzeichnen, in der Form: $|T_3, T_8\rangle$ $|R\rangle = |\frac{1}{2}, \frac{1}{2\sqrt{3}}\rangle, |G\rangle = |-\frac{1}{2}, \frac{1}{2\sqrt{3}}\rangle, |B\rangle = |0, -\frac{1}{\sqrt{3}}\rangle$ und in der T_3 -Ebene darstellen:

Anti-Quarks sind in Darstellung [3]: $\bar{T}_a = -T_a^*.$ Sie erfüllen die SU(3)-Algebra, genau wie T_a

$$\left[\overline{T}_a, \overline{T}_b\right] = i f_{abc} \overline{T}_c$$

daher eine Darstellung, die im Übrigen nicht äquivalent zu[3]ist. Basisvektoren sind gemeinsame Eigenvektoren von

 $q\bar{q}$ -Zustände sind Zustände auf dem Raum $[3] \otimes [\bar{3}]$. Produktzustände: $|R\bar{R}\rangle$, $|R\bar{G}\rangle$, $|R\bar{B}\rangle$, ... Colour-Raum von $q\bar{q}$ -Zuständen: $[3] \otimes [\bar{3}] \rightarrow \text{ein 9-dim. Raum}$ Dieser ist irreduzibel \rightarrow "ausreduzieren": Zerlegen in direkte Summe aus irreduziblen Darstellungen (analog Spin \otimes Spin $= \sum$ Gesamtspin) entspricht einer Basis-Transformation, so dass die SU(3)-Darstellungsmatrizen block-diagonal werden.

Neue Basisvektoren:

- Linearkombination der Produktbasisvektoren
- Koeffizienten: Clebsch-Gordon-Koeffizienten der SU(3)

Bei $[3] \otimes [\overline{3}]$:

$$(9 \times 9) = \begin{pmatrix} 8 \times 8 & 0 \\ \hline 0 & 1 \times 1 \end{pmatrix}$$

 \rightarrow Oktett \oplus Singlett. $[3] \otimes [\overline{3}] = \underbrace{[8]}_{Oktett} \oplus \underbrace{[1]}_{Singlett}$ Der **Singlett-Zustand** ist die folgende Linearkombination der Produktbasisvektoren:

$$|\text{Singlett}\rangle = \frac{1}{\sqrt{3}}(|R\bar{R}\rangle + |G\bar{G}\rangle + |B\bar{B}\rangle)$$

Quantenzahlen: $T_3 = 0$, $T_8 = 0$, colour-neutral.

Die Oktett-Basisvektoren sind 8 auf |Singlett) orthogonalse Linearkombinationen (auch untereinander orthogonal), werden hier nicht angegeben, enthalten z. B. $|R\bar{G}\rangle$, $|R\bar{B}\rangle$, $|G\bar{R}\rangle$, ... und lassen sich bzgl. T_3 und T_8 wie folgt zeigen.

wobei (0,0) doppelt besetzt ist

Quark-Quark-Zustände (qq) sind Zustände auf dem Produktraum $[3] \otimes [3]$ ebenfalls 9-dim. Produktzustände: $|RR\rangle$, $|RG\rangle$, ... (9 Basisvektoren). Ausreduzieren $(\rightarrow \text{geeignete Basis})$ ergibt

$$[3] \otimes [3] = [6] \oplus [\overline{3}]$$

Das Sextett [6] hat ein abstoßendes Potential, das Anti-Triplett $[\bar{3}]$ führt auf

$$V(r) = -\frac{2}{3} \cdot \frac{\alpha_s}{r}$$
 (anziehend)

Jedoch wurden keinerlei (qq) Zustände (Di-Quarks) gefunden. (Werden wegen der Energie des Gluon-Feldes $\rightarrow \infty$ auch nicht erwartet).

Jedoch wird das wichtig für 3-Quark-Zustände \rightarrow siehe später

Nun zurück zum Potential.

$q\bar{q}$ Singlett

k = j und l = n und summieren \rightarrow Colour-Faktor (siehe Seite 50)

2.6. QCD-POTENTIALE UND BINDUNGSZUSTÄNDE

$$[\text{Colour-Faktor}]_{q\bar{q}-\text{Singlett}} = \sum_{a} \left(\frac{1}{\sqrt{3}}\right)^{2} \sum_{k,l} (T_{a})_{lk} (T_{a})_{kl}$$
$$= \frac{1}{3} \sum_{a} Tr(T_{a}T_{a}) = \frac{1}{3} \sum_{a} \frac{1}{2} = \frac{1}{3} \cdot \frac{1}{2} \cdot 8 = \frac{4}{3}$$

Daher anziehendes Potential:

$$V^{(q\bar{q})}_{QCD}=-\frac{4}{3}\frac{\alpha_s}{r}$$

erlaubt Bindungszustände, analog Positronium: Quarkonium

$q\bar{q}$ Oktett

(ohne Ausführung) Colour-Faktor = $-\frac{1}{6}$

$$\Rightarrow V_{QCD}^{(q\bar{q})} = +\frac{1}{6} \cdot \frac{\alpha_s}{r} \qquad (\text{abstoßend})$$

keine Bindung möglich.

Fazit:

Bindungszustände von $q\bar{q}$ -Zuständen nur als Colour-Singlett. ($q\bar{q}$)-Bindungszustände sind colour-neutral (Colour-Ladung wird kompensiert). \Rightarrow Mesonen als $q\bar{q}$ -Zustände tragen keine Colour.

Ergänzung:

Das aus 1-Gluon-Austausch gewonnene Potential ist unvollständig, da für große r die starke WW stark wird. Daher (phänomenologisch, nicht rigoros, aber motiviert durch verschiedene Approximationsmethoden, z. B. Gitter)

$$V_{QCD}^{(q\bar{q})} = -\frac{4}{3}\frac{ds}{r} + kr \qquad \qquad k > 0 \text{ (String-Tension)}$$

 $q\bar{q}$ sind "eingeschlossen": $Quark\mathchar{-}Confinement$ Grund für den linearen Term: Selbst-WW der Gluonen.

Feldstärken zwischen q und \bar{q} :

e.m. Feld

QCD: string-artige Konzentration der Feldenegie, wächst an mit Abstand \Rightarrow keine freien Quarks

3-Quark-Zustände (qqq)

sind Zustände auf dem Produktraum

$$= \underbrace{ \begin{array}{ccc} [3] \otimes [3] \\ [6] \oplus [\overline{3}] \\ [6] \otimes [\overline{3}] \\ [10] \oplus [8] \oplus [8] \\ [10] \oplus [8] \\$$

(qqq)-Bindungszustände sind daher nur möglich, als Colour-Singlett: Baryonen \Rightarrow Baryonen sind colour-neutral.

 $|qqq\rangle_{\rm Singlett} = |{\rm vollständig}~{\rm antisymmetrisch}\rangle$

$$= \frac{1}{\sqrt{3!}} \begin{vmatrix} |R\rangle_1 & |G\rangle_1 & |B\rangle_1 \\ |R\rangle_2 & |G\rangle_2 & |B\rangle_2 \\ |R\rangle_3 & |G\rangle_3 & |B\rangle_3 \end{vmatrix}$$

Für Zustände aus gleichen Flavour-Quarks, wie z. B. (*sss*) ist zu beachten, dass die Spin- und Bahn-Anteile symmetrisch sind, so dass der Gesamtzustand gemäß Pauli-Prinzip antisymmetrisch ist. Beispiel:

$$\begin{split} |\Omega^{-}\rangle &= |sss\rangle \text{ mit Spin } \frac{1}{2} = |\text{Bahn}\rangle |\text{Spin}\rangle |\text{Colour}\rangle \\ &= \underbrace{|L=0\rangle}_{\text{symm.}} \underbrace{|s=\frac{3}{2}\rangle}_{\text{symm:|\uparrow\uparrow\uparrow\rangle}} \underbrace{|\text{Singlett}\rangle}_{\text{anti-symm}} \end{split}$$

ohne Colour wäre der Zustand symmetrisch!

Wichtiger Hinweis auf Colour im Quarkmodell, vor der QCD.

Fazit:

Baryonen = (qqq)-Bindungszustände Mesonen = $(q\bar{q})$ -Bindungszustände jeweils als Colour-Singletts

2.6.3 Quarkonia

In Analogie zum Positronium: Bindungszustände aus $q\bar{q}$ im Potential

$$V_{QCD}^{(q\bar{q})} = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

Beachte:

Der Anteil ~ $\frac{1}{r}$ (analog zu Colomb-Potential) wurde perturbativ aus dem 1-Gluon-Austausch gewonnen. Daher ist diese Form nur sinnvoll, wenn die Massenskala des Quarks > Λ_{QCD} ist, so dass $\alpha_s = \alpha_s(m_q^2)$ gesetzt werden kann. $c\bar{c}$: Charmonium, $m_c = (1, 5 - 1, 8) \ GeV$

 $b\bar{b}$: Bottomonium, $m_b = (4, 7-5) GeV$

beide $m_{c,m} \gg \Lambda_{QCD}$

Daher ist

$$V^{(b\bar{b})} = -\frac{4}{3} \frac{\alpha_s(m_b)}{r} + kr$$

$$V^{(c\bar{c})} = -\frac{4}{3} \frac{\alpha_s(m_c)}{r} + kr$$
} jeweils eine sinnvolle Approximation.

Anmerkungen:

- 1) Für die leichten Quarks u, d, s ist wegen $m_q \leq \Lambda_{QCD}$ ein solches Potential nicht geeignet. Dennoch gibt es die entsprechenden Zustände, allerdings nicht mit diesem einfachen Potential, das dem 1-Gluon-Austausch entspricht.
- 2) Für die tief-liegenden Zustände im Quarkonium ist die Analogie zum Positronium deutlicher als für die höher-angeregten (merken weniger vom +kr-Term)
- 3) Ab einer Schwelle E_{th} sind Zustände mit $E > E_{th}$ nicht stabil, zerfallen z. B. gemäß

$$|b\bar{b}\rangle \rightarrow \underbrace{|b\bar{u}\rangle}_{|B^-\rangle} + \underbrace{|\bar{b}u\rangle}_{|B^+\rangle} \qquad |B^{\pm}\rangle: \text{ B-Mesonen}$$

dies ist möglich, wenn $m_{(b\bar{b})} > m_{B^-} + m_{B^+}$

In der üblichen Terminologie aus der Spektroskopie (S für L = 0, P für L = 1, usw.) hat man die Spektren:

	$c\bar{c}$			$b\overline{b}$	
J/ψ	$1^{3}\!S_{1}$	$\begin{array}{c} 1974 \ \mathrm{BNL} \\ \mathrm{und} \ \mathrm{SLAC} \\ 3,1 \ \mathrm{GeV} \end{array}$	Υ	$1^{3}\!S_{1}$	1978 Fermilab 9,5 GeV
ψ'	$2^3\!\mathrm{S}_1$	$3,7~{\rm GeV}$	Υ'	$2^3\!\mathrm{S}_1$	$10~{\rm GeV}$
$\psi^{\prime\prime}$	$3^3\!\mathrm{S}_1$		Υ"	$3^3\!\mathrm{S}_1$	oberhalb der Schwelle

Weitere Zustände mit S = 1 (Vektormesonen) aus leichten Quarks (u, d, s):

$$\rho^{0} = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d}) \qquad m_{\rho} = 770 \ MeV$$
$$\omega = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) \qquad m_{\omega} = 782 \ MeV$$
$$\phi = s\bar{s} \qquad m_{\phi} = 1019 \ MeV$$
$$J/\psi = c\bar{c} \qquad m_{\psi} = 3, 1 \ GeV$$
$$\Upsilon = b\bar{b} \qquad m_{\Upsilon} = 9, 5 \ GeV$$

Zustände mit S = 0 (pseudoskalare⁴ Mesonen):

$$\Pi^{+} = -u\bar{d}$$

$$\Pi^{0} = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$$

$$\Pi^{-} = d\bar{u}$$

$$K^{+} = u\bar{s}$$

$$K^{0} = d\bar{s}, \ \bar{K}^{0} = -s\bar{d}$$

$$K^{-} = s\bar{u}$$

 $[\]overline{\ }^4$ "pseudo-skalar", wegen Paritä
t $\mathcal{P}=-(-1)^L=-1,$ daL=0."-"-Zeichen, d
aqund \bar{q} entgegengesetzte Parität haben (als Dirac-Teilchen)

Kapitel 3

e^+e^- - Colliderphysik

Quarkflavours, Farben, Gluonen, $W^{\pm}Z$ 3.1

 e^-e^+ - Vernichtung:

 $f\bar{f}$: Quark-Antiquarkpaar (=Meson), Lepton-Antileptonpaar. f für Fermion (Spin 1/2).

Quantenzahlen von $f\bar{f}$: (elektrische Ladung) $Q_e = 0$ J = 1(Gesamtspin) Mesonen mit J = 1: "Vektormesonen".

Elektron-Positron-Collider

Teilchenerzeugung¹; Kinematik: Entscheidend ist die invariante Masse \sqrt{s} mit $s = (p_1 + p_2)^2 p_{1,2}$: 4er-Impulsektor Collider:

$$p_1 = (E, \vec{p}c)$$
$$p_2 = (E, -\vec{p}c)$$
$$\Rightarrow \sqrt{s} = 2E$$

Vergleiche e^+ auf ruhendes Target:

$$p_1 = (E, \vec{pc})$$

¹Positronenerzeugung: e^- auf Target 1 \rightarrow Bremsstrahlung γ WW γ mit Target 2 (hohes Z) \rightarrow Paarbildung e^-e^+ . e^+ -Selektion und Beschleunigung

$$p_2 = (mc^2, 0)$$

$$\Rightarrow s = (E + mc^2)^2 - \vec{p}^2 c^2$$

$$s = E^2 + 2Emc^2 + m^2 c^4 - p^2 c^2$$

$$s = 2Emc^2 + 2m^2 c^4$$

also $\sqrt{s} \sim \sqrt{E} \ (E \gg mc^2) \Rightarrow$ Schwerpunktsenergie: Speicherring: $\sim E$ ruhendes Target: $\sim \sqrt{E}$

3.1.1 e^+e^- -WW: Leptonische Kanäle

$$e^+e^- \longrightarrow e^+e^-$$
 ("Bhabha"-Streuung)
 $e^+e^- \longrightarrow \mu^+\mu^-$

Für $\sqrt{s} > 210 \text{ MeV} \rightarrow M_{\mu^{\pm}} = 105 \text{MeV}/c^2$

$$e^+e^- \longrightarrow \tau^+\tau^-$$

Für $\sqrt{s}>2568~{\rm MeV}\rightarrow M_{\tau^\pm}=1784~{\rm MeV}/c^2$ Leptonenuniversalität: e,μ,τ unterscheiden sich nicht in ihren Reaktionen.

Leptonzerfall:

$$\begin{aligned} \tau_e &= \infty \quad (\tau_e > 1 \cdot 10^{24} \ a \\ & \tau_\mu \simeq 22 \ \mu \text{sec} \\ & \tau_\tau \simeq 3 \cdot 10^{-13} \ \text{sec} \\ & \mu^- \longrightarrow e^- \bar{\nu}_e \nu_\mu \\ - \longrightarrow e^- \bar{\nu}_e \nu_\tau \quad ; \quad \longrightarrow \mu^- \bar{\nu}_\mu \nu_\tau \quad + \text{ hadronische Kanäle} \end{aligned}$$

 μ^{\pm} sind leicht nachzuweisen:

i) große Reichweite

 au^{\prime}

ii) Zerfall \rightarrow verzögerte Koinzidenz

 $\Rightarrow e^+e^- \rightarrow \mu^+\mu^-$ wird oft als Referenzsignal benutzt. Entdeckung des $\tau\text{-}$ Leptons (1975, SLAC):

$$e^+e^- \longrightarrow \underbrace{\tau^+}_{\to e^+ + \nu_e + \bar{\nu}_\tau} \underbrace{\tau^-}_{\to \mu^- + \bar{\nu}_\mu + \nu_\tau}$$

mit $E = E_{\mu} + E_e \ll \sqrt{s}$ (die Restenergie wird von den ν 's weggetragen). $m_{\tau} = 1777 \text{ MeV}/c^2$. Wirkungsquerschnitt $e^+e^- \rightarrow \mu^+\mu^-$:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (\hbar c)^2 (1 + \cos^2 \theta)$$

- elektromagnetische WW: $\sigma \sim |e \cdot e|^2 = \alpha^2$
- $\hbar c \simeq 200 \text{ MeV} \cdot \text{fm}$

3.1. QUARKFLAVOURS, FARBEN, GLUONEN, $W^{\pm}Z$

- $1 + \cos^2 \theta$: Parität ist erhalten (analog zur Mottstreuung)
- $\sigma \sim s^{-1}$ we
gen $\frac{1}{q^4} = s^{-2}$ und Phasenraum $\sim s$

$$\sigma_{tot} = \int \frac{d\sigma}{d\Omega} \ d\Omega = \frac{4\pi\alpha^2}{3s} (\hbar c)^2$$

bzw.

$$\sigma_{tot} = 21,7 \ \frac{n \text{ barn}}{(E^2/\text{GeV}^2)}$$

 σ_{tot} für punktförmige Teilchen \Rightarrow Formfaktoren $F_{e,\mu,\tau}=1,\,r_e<1\,\cdot\,10^{-18}$ m.

3.1.2 e^+e^- -WW: Hadronische Kanäle

Resonanzen: Anregung erlaubter Quantenzustände (= Teilchen). Ansatz: Wellenfunktion $\psi(t)=\psi(0)e^{-iEt/\hbar}$

$$|\psi(t)|^2 = |\psi(0)|^2 = const$$

Aber: Teilchen in Resonanzen sind instabil.² Ansatz: $\psi(t) = \psi(0)e^{-iE_0t/\hbar} \cdot e^{-i\Gamma t/2\hbar}$

$$|\psi(t)|^2 = |\psi(0)|^2 \cdot e^{-\Gamma t/\hbar}$$

Übereinstimmung mit Zerfallsgesetz, wenn gilt:

$$\Gamma \cdot \tau = \hbar$$

mit $\tau :=$ mittlere Lebensdauer (des Zustands/Teilchens)

Energiespektum des Teilchens?

 $\psi(t) \longrightarrow \psi(E)$ (Fouriertransformation)

Allgemein:

$$f(t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} d\omega \ g(\omega) e^{-i\omega t}$$
$$g(\omega) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} dt \ f(t) e^{+i\omega t}$$

²Zumindest muss die Möglichkeit des Zerfalls im Ansatz beinhaltet sein!

 Hier^3

$$g(\omega) = (2\pi)^{-1/2} \psi(0) \int_0^\infty dt \ e^{i(\omega - E_0/\hbar)t} \cdot e^{-i\Gamma t/2\hbar}$$
$$g(\omega) = \frac{\psi(0)}{(2\pi)^{1/2}} \frac{i\hbar}{(\hbar\omega - E_0) + i\Gamma/2}$$

 $g(\omega):=$ Amplitude, Frequen
z ω zu finden. $E=\hbar\omega\to$ Wahrscheinlichkeitsdichte, die Energi
eEzu finden:

$$P(E) \sim g^*(\omega)g(\omega) = \frac{\hbar^2}{2\pi} \frac{|\psi(0)|^2}{(E - E_0)^2 + \Gamma^2/4}$$

mit $\int_0^\infty P(E) \ dE = 1$

$$P(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - E_0)^2 + (\Gamma/2)^2}$$
 Lorentz- oder Breit-Wignerkurve

- Energieverteilung (keine scharfe Energie)
- Maximum bei $E = E_0$ (Resonanzenergie)
- $P(E_0 \pm \Gamma/2) = \frac{1}{2}P(E_0)$

Beobachtete Resonanzen bei e^+e^- -WW: $[\sqrt{s}]=$

- (770 780) MeV
- 1019 MeV
- (3,1 3,7) GeV
- 10 GeV
- 91 GeV

³Für $\Gamma = 0$ ($\tau = \infty$) wird das Integral zur Deltafunktion und $g(\omega) = 0$ nur für $\omega = E_0/\hbar$ ist $g(\omega) = 1$. D.h. $E = E_0$ (scharfer Energieerwartungswert)

770 – 780 MeV: ρ^0 -, ω -Resonanz

$e^+e^- \to \rho^0 \to \pi^+\pi^-$	$M(\rho) = 770 \text{ MeV}$
$e^+e^- \rightarrow \omega^0 \rightarrow \pi^+\pi^0\pi^-$	$M(\omega) = 782 \text{ MeV}$

- $\Gamma_{\rho} = 154 \text{ MeV}$
- $\Gamma_{\omega} = 9,9 \text{ MeV}$
- $\tau_{\rho} \simeq 4 \cdot 10^{-24}$ sec
- $\tau_{\omega} \simeq 7 \cdot 10^{-23} \text{ sec}$

(Zeitskala: starke WW). Zugrundeliegender Prozess: Erzeugung von $u\bar{u}$ und $d\bar{d}$ -Paaren. Z.B:

 $\label{eq:Hadronen} \mbox{Hadronen} \ (= {\it stark} \ {\it wechselwirkende} \ Teilchen) \ aus \ Quark-Antiquark paaren: \ {\it Mesonen}.$

$\pi^+ = u\bar{d}$ (Valenzquarks)	Spin - 0
$\pi^- = \bar{u}d$	Spin - 0
$\pi^0 = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$	Spin - 0
$\rho^0 = \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})$	Spin - 1
$\omega = \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d})$	Spin - 1

Pionentriplett: $\pi^+ \pi^0 \pi^-$

Spin: J = 0; "Isospin": I = 1.

Rhotriplett: $\rho^+ \rho^0 \rho^-$

Spin: J = 1; "Isospin": I = 1. $\rho^+ = u\bar{d}$; $\rho^- = \bar{u}d$ (Spins der Quarks: parallel)

ω -Singulett:

Spin: J = 0; "Isospin": I = 0.

 ϕ -Resonanz:

$$\sqrt{s} = 1019 \,\,{\rm MeV} = m(\phi)$$

 $\Gamma = 4, 4 \text{ MeV} \rightarrow \text{lange Lebensdauer!}$

Zerfallskanäle (85%):

$$\phi \to K^+ + K^-;$$
 $m_{K^{\pm}} = 494 \text{ MeV}/c^2$
 $\phi \to K^0 + \bar{K}^0;$ $m_{K^0} = 499 \text{ MeV}/c^2$

Kaonen K^{\pm}, K^0 : "seltsame" Teilchen.
 $(\tau_{K^{\pm}}\simeq 13$ nsec; $K^+\to \mu^+\nu_{\mu}$ schwache WW)

Erzeugung: via starke WW

Zerfall: via schwache WW; aber auch: $K^+ \to \pi^+ + \pi^0$.

Einführung von s-Quarks (s=,,strange" Quark). $K^+ = u\bar{s}, K^0 = d\bar{s}, K^- = \bar{u}s, \bar{K}^0 = \bar{d}s.$ elektrische Ladung s-Quark: $Q = -\frac{1}{3}$. Quantenzahl "Strangeness" S: Zahl der \bar{s} -Antiquarks minus s-Quarks: (Spin K : J = 0). Elektromagnetische + starke WW: S bleibt erhalten.

 $Schwache\ WW:$ S kann geändert werden.

J/ψ und Y-Resonanzen

1974: $\sqrt{s}=3097~{\rm MeV}~\Gamma=88~{\rm keV}$ (!) ($J/\psi{\rm -Resonanz}).$ Entdeckung des c-Quarks.

→ energetisch verboten, weil: $m(D^0 = c\bar{u}) = m(\bar{D}^0 = \bar{c}u) = 1865 \text{ MeV}/c^2$. Auch $J/\psi \to \underbrace{D^+}_{D^+=c\bar{d}} + \underbrace{D^-}_{D^-=\bar{c}d}$ verboten. $m(D^{\pm}) = 1869 \text{ MeV}/c^2$. El. Ladung e:

 $Q = +\frac{2}{3}$ (charm-Quark). Zerfall in Pionen möglich, aber nur in WW höherer Ordnung. \rightarrow kleiner Wert von Γ .

Entdeckung b-Quark (Y-Resonanz): $\sqrt{s} = 10 \text{ GeV}; \Gamma = 52 \text{ keV}, Y = b\overline{b}, Q_b = -\frac{1}{3}$

 $r \not\rightarrow B^+(u\bar{b}) \quad B^-(\bar{u}b)$

$$r \not\rightarrow B^0(d\bar{b}) \quad \bar{B}^0(\bar{d}b)$$

weil $m(B^0) = 5279 \text{ MeV}/c^2$, $m(B^{\pm}) = 5278 \text{ MeV}/c^2$. Entdeckung t-Quark 1995 (Tevatron) mit $m(t) = (180 \pm 12) \text{ GeV}/c^2$

3.1.3 Zusammenfassung Quarks

$$\begin{array}{c|c} Q/e & \xrightarrow{\text{Massenskala}} \\ \hline +\frac{2}{3} & \text{u c } (t) \\ -\frac{1}{3} & \text{d s b} \end{array}$$

1995: Nachweis des t
 "Top"-Quarks am Tevatron (FNAL) in $p\bar{p}$ -Kollisionen. Spin des Quarks
 J=1/2. Weitere Quantenzahlen (Flavour):

\mathbf{S}	s-Quark	-1
С	c-Quark	+1
В	b-Quark	-1
Т	t-Quark	+1

Konvention: Flavourquantenzahlen haben das gleiche Vorzeichen wie die elektrische Ladung des Quarks. Antiquarks: Quantenzahl = -Quantenzahl (Quark).

3.2 Nichtresonante Erzeugung von Hadronen

Erzeugung von Quark-Antiquark-Paaren außerhalb von Resonanzen

 $\sigma \sim \alpha \, \cdot \, Q_q^2$

Abhängig von \sqrt{s} können $q\bar{q}$ -Paare bis $b\bar{b}$ gebildet werden.

$$\begin{array}{ll} \sqrt{s} < 3 \ \mathrm{GeV}: & u,d,s \\ \sqrt{s} < 10 \ \mathrm{GeV}: & u,d,s,c \\ \sqrt{s} < 60 \ \mathrm{GeV}: & u,d,s,c,b \end{array}$$

Vergleich σ (Hadronen) mit $\sigma(\mu^+\mu^-)$:

$$R = \frac{\sigma(e^+e^- \longrightarrow \text{Hadronen})}{\sigma(e^+e^- \longrightarrow \mu^+\mu^-)}$$
$$R(\sqrt{s} \lesssim 3 \text{ GeV}) = \underbrace{\left(\frac{2}{3}\right)^2}_{,,u^u} + \underbrace{\left(\frac{-1}{3}\right)^2}_{,,d^u} + \underbrace{\left(\frac{-1}{3}\right)^2}_{,,s^u} = \frac{2}{3}$$
$$R(\sqrt{s} \lesssim 10 \text{ GeV}) = \frac{2}{3} + \underbrace{\left(\frac{2}{3}\right)^2}_{,,c^u} = \frac{10}{9}$$
$$R(\sqrt{s} \lesssim 60 \text{ GeV}) = \frac{10}{9} \underbrace{\left(\frac{-1}{3}\right)^2}_{,,b^u} = \frac{11}{9}$$

Experimenteller Befund: R ist um einen Faktor 3 größer! (für alle Energien) \Rightarrow Jedes $q\bar{q}$ -Paar kann in 3 Zuständen der "starken Farbladung" auftreten: $R\bar{R}$, $G\bar{G}$, $B\bar{B}$. Weiterer Hinweis auf 3 zusätzliche Freiheitsgrade in $p\pi^+$ -Resonanzen.

$$p\pi^+ \to \Delta^{++} \to p\pi^+$$
 (bei 1236 MeV)

Im Quarkbild:

 $uud + u\bar{d} \rightarrow uuu$

Quantenzahlen Δ^{++} :

 $Q = +2; J = \frac{3}{2}$ (aus Winkelverteilung) $\Delta^{++} = u^{\uparrow} u^{\uparrow} u^{\uparrow}$

Vollkommen *symmetrisch* bzgl. dem Austausch zweier Quarks. Verletzung des Pauliprinzips wird vermieden durch 3 Farbfreiheitsgrade. Farben: "starken Ladungen" der Quarks.

Postulat: Baryonen (Hadronen mit 3q)und Mesonen (Hadronen mit $q\bar{q})$ sind Farbneutral.

Z.B.:
$$\Delta^{++} = u_R u_G u_B, \ \pi^+ = \frac{1}{\sqrt{3}} (u_R \bar{d}_{\bar{R}} + u_G \bar{d}_{\bar{G}} + u_B \bar{d}_{\bar{B}})$$

$$R + G + B = 0$$

 $R + \bar{R} = 0$
 $G + \bar{G} = 0$
etc.
Antiquarks tragen "Antifarbe"

Kapitel 4

Gluonen

Austauschbosonen der starken WW. Z.B.:

Gluonen tragen Farben. Sie unterliegen selbst der starken WW. Starke WW ist invariant gegenüber einer Vertauschung der Farben. Gruppentheorie: Zuordnung der Quarks der speziell unitären Gruppe SU(3). \rightarrow Es existieren 8 linear unabhängige Kombinationen von Farb-Antifarbzuständen der Gluonen.

QED: 2 Ladungen (+,-); 1 Boson (γ) (neutral) QCD: 6 Ladungen; 8 Bosonen (geladen)

4.1 QCD-Potential bei kleinen Abständen

1984: CERN $p\bar{p}$ -Collider. Analyse von 2-Jet Ereignissen. Für große q^2 -Werte (=kleine Abstände):

$$\frac{d\sigma}{d\Omega} \simeq \left(\frac{9}{8}\right) \frac{\alpha_s^2}{4p_0^2 \sin^4(\theta/2)}$$

analog zum Rutherfordgesetzt!

Experimentell: $\frac{d\sigma}{d\Omega} \propto \sin^{-n}(\theta/2)$ mit $n = 4, 16 \pm 0, 20$. \Rightarrow bei kleinen Abständen r: QCD-Potential $\sim \frac{1}{r}$. Abweichungen bei großen Streuwinkeln durch relativistische Spineffekte) Aus $\frac{d\sigma}{d\Omega}$ (und auch aus den Ergebnissen der tiefinelastischen Lepton-Nukleonstreuung): $\alpha_s \simeq 0, 20$

4.2 QCD-Potential bei großen Abständen

Lineare Relation zwischen Spin und ${\rm Masse}^2$ hadronischer Resonanzen

Starke Selbstwechselwirkung der Gluonen: Stringmodell

Definition: k := Energiedichte pro Einheitslänge. Annahme: k = konst $(r \leq r_0)$. \rightarrow Potential V(r) = kr.

Gesamtmasse (=Energie) des Systems:

$$E = Mc^2 = 2 \int_0^{r_0} dr \ \gamma k$$
 mit $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$

Wenn $v(r=r_0)\simeq c$ gilt $v(r)=\frac{r}{r_0}c$ und $E=Mc^2=kr_o\pi$

Gesamtdrehimpuls (=Spin) des Systems:

$$\hbar J = 2 \int_0^{r_0} dm \ rv = 2 \int_0^{r_0} rv(r) \cdot \underbrace{\gamma \cdot \frac{kdr}{c^2}}_{dm}$$
$$J = \frac{kr_0^2\pi}{2\hbar c} \Rightarrow J = const \cdot M^2 + const$$

Allgemeiner Ansatz: $V(r) = kr^n$ ergibt: $J \propto M^{(1+1/n)}$. Experimenteller Befund: Bester Fit für n = 1.

Große Abstände: Potential $\sim r$

Wert für $k: k \simeq 1 \text{ GeV/fm. } e^+e^-$ -Vernichtung bei sehr hohen Energien ($E_e \gtrsim 30$ GeV): Normaler Prozess: Fragmentation des $q\bar{q}$ -Paares in Hadronen. $E_e \gtrsim 30$ GeV \rightarrow typisch 10 Hadronen (meistens Pionen). Transversalimpuls $p_T \simeq \frac{\hbar}{R_0} \leq 0,5$ GeV. Longitudinalimpuls $p_L \simeq 6$ GeV. \Rightarrow

4.3. QUARKONIA

- i) Bündelung der Hadronen in 2 "Jets".
- ii) Flugrichtung, wie die der primären Quarks.

3-Jet: Ereignisse höherer Ordnung in α_s Verhältnis 3-Jet/2-Jet - Ereignisrate → Messung von α_s :

$$\alpha_s = 0, 16 \pm 0, 03 \quad (\sqrt{s} = 46 \text{ GeV})$$

Winkelverteilung der 3-Jet-Ereignisse untereinander. \rightarrow Messung Gluonenspin.

 $J_G = 1$

Gluonen sind *Vektorbosonen* wie die Austauschquanten der elektromagnetischen und der schwachen WW.

4.3 Quarkonia

Vergleich zum Positronium (e^+e^-) : Coulomb
potential $V_{em} = -\frac{\alpha}{r}$ und

$$E_n = -\frac{\alpha^2 m c^2}{4n^2} \qquad \text{mit}$$

- $m = 0,511 \text{ MeV}/c^2$ und
- n: Hauptquantenzahl (n = 1, 2, 3, ...)

Spin-Bahn bzw. Spin-Spin-WW erzeugt Triplett 3S_1 und Singlett 1S_0 Zustände \Rightarrow Feinstrukturaufspaltung mit

$$\Delta E \sim \frac{\alpha^4 m c^2}{n^3}$$

QCD:
$$V_{QCD} = \underbrace{-\frac{4}{3}\frac{\alpha_s}{r}}_{\Delta E(2S-1S):\sim m \cdot \alpha^2} + \underbrace{kr}_{\sim m^{-1/3}}_{\Delta E(2S-1P):\sim m \cdot \alpha^4}$$

System	Masse/MeV	$\Delta E (\sim \alpha^2 m)$	$\Delta E (\sim \alpha^4 m)$
e^+e^-	0,511	5,1 eV $(\alpha = \frac{1}{137})$	$3,6 \cdot 10^{-5} \text{ eV}$
$\psi = c\bar{c}$	1870	589 MeV $(\alpha \simeq 0, 3)$	$130 { m MeV}$
$Y = b\bar{b}$	5280	565 MeV $(\alpha \simeq 0, 3)$	$110 { m MeV}$

Kapitel 5

Schwache Wechselwirkung

Alle Hadronen und Leptonen nehmen an der schwachen Wechselwirkung teil. Leptonen unterliegen nur der schwachen und (bei Ladung) der elektromagnetischen Wechselwirkung.

mit $m_e = 0,511 \text{ MeV}/c^2$ $m_{\mu} = 105 \text{ MeV}/c^2$ und $m_{\tau} = 1777 \text{ MeV}/c^2$ Leptonzahlerhaltung: Individuelle \mathcal{L} -Zahl L_e, L_{μ}, L_{τ}

$$\begin{array}{cc} \pi^+ \to \mu^+ \nu_\mu \\ L_\mu: & 0 = -1 + 1 \end{array} \quad \text{erlaubt} \end{array}$$

$$\begin{array}{l}
 \nu_{\mu} + n \rightarrow \mu^{-} + p \\
 L_{\mu}: \quad +1 + 0 = +1 + 0 \quad \text{erlaubt}
 \end{array}$$

 $\mu^- \rightarrow e^- + \gamma$ verboten

 $\label{eq:exp:rescaled} \text{Exp.:} \ R(\mu \to e \gamma) < 1,2 \, \cdot \, 10^{-11} \, \cdot \, R(\mu \to e \nu \nu).$

Klassifizierung der schwachen WW:

Leptonisch: $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ (elastische ν -Streuung) $\nu_e + e^- \to \nu_e + e^-$ Semileptonisch: $n \to p e^- \bar{\nu}_e$ $\bar{\nu}_e + p \to n + e^+$ $K^+ \to \mu^+ \nu_\mu$ Nichtleptonisch: $\Lambda^0 \to \pi^- p$ $K^+ \to \pi^+ \pi^0$ oder $K^+ \to \pi^+ \pi^0 \pi^+$ hier: $\Delta S = 1$ (auch bei $K^- \to \mu^- \bar{\nu}_\mu$) und verboten in

 $elektromagnetischer \ und \ starker \ WW.$

Merkmal: Lange Lebensdauern ($\tau \gg 1 \cdot 10^{-19}$ s) und kleine Wirkungsquerschnitte ($\sigma \ll 1 \cdot 10^{-38}$ cm²) bei Energien $\lesssim 1 \cdot 10^2$ GeV. Bsp.: $p + p \rightarrow^2 H + e^+ + \nu_e$

Fusion von Wasserstoff zu Deuterium in der Sonne: Reaktionsrate ($\rho \simeq 1 \cdot 10^2 \text{ g/cm}^3$; $kT \simeq \text{keV}$) $\simeq 1 \cdot 10^{-10} \text{ a}$

5.1 Betazerfall von Kernen: Fermitheorie

$$n \to p + e^- + \bar{\nu}_e$$

Im Quarkbild:

$$d \rightarrow u + e^- + \bar{\nu}_e$$

über Austausch eines W-Bosons:

Wegen $M_W \simeq 80 \text{ GeV}/c^2$ ist $q^2 \ll M_W^2 \rightarrow \text{effektive Vierfermionkopplung}.$

Übergangswahrscheinlichkeit nach Fermi:

$$W = \frac{2\pi}{\hbar} G^2 |\mathcal{M}|^2 \frac{dN}{dE_0}$$

 mit

- E_0 : Energie des Endzustandes
- $\frac{dN}{dE_0}$: Endzustandsdichte ("Phasenraum")
- $|\mathcal{M}|^2$: Quadrat des Matrixelements

 $|\mathcal{M}|^2$ hat Größenordnung 1 für erlaubte Kernübergänge.

Impulsverteilung:

Betazerfälle

Gesamtspin von $e^-\bar\nu_e:\emptyset$ "Fermi"-Übergang Gesamtspin von $e^-\bar\nu_e:1$ "Gamov-Teller"

$$W_{GT} \simeq 3 \cdot W_F$$
 (Spinmultiplizität)

$$\begin{array}{l} \frac{dN}{dE_0} = ? \\ \vec{p} = \text{ Impuls Elektron} \\ \vec{q} = \text{ Impuls Neutrino} \\ \underline{\vec{p}} = \text{ Impuls Proton} \end{array} \right\} n \to p + e^- + \bar{\nu}_e$$

Wegen $m_{\nu} \ll m_e \ll m_p$ ist $(E_0 \simeq \text{MeV})$. $E_p = \underline{p}^2/2m_p \simeq \text{keV}$ und vernachlässigbar. Für $m_{\nu} = 0$ gilt $qc = E_0 - E$. Zahl der Phasenraumzustände [p, p + dp]:

$$\frac{V \ d\Omega}{h^3} p^2 \ dp$$

Im Einheitsvolumen (V = 1):

$$\frac{4\pi p^2}{h^3} \, dp$$

Für das Neutrino:

$$\frac{4\pi q^2}{h^3} dq$$

Proton: $\underline{\vec{p}} = -(\vec{p} + \vec{q})$

$$\Rightarrow d^2 N = \frac{16\pi^2}{h^6 c^3} p^2 q^2 \, dp \, dq$$

Mit $q = (E_0 - E)/c$ und $dq = dE_0/c$ gilt

$$\frac{d^2N}{dE_0} = \frac{16\pi^2}{h^6c^3}p^2(E_0 - E)^2 dp$$

⇒ Elektronenspektrum $N(p) dp \sim p^2 (E_0 - E)^2 dp$ Kurie-Diagram: $K = \sqrt{N(p)/p^2} \sim E_0 - E$

Wechselwirkung Elektron im Coulombfeld des Kerns: Fermifunktion $F(Z,E) \rightarrow e^-$ -Spektrum zu kleineren Energien $\rightarrow e^+$ -Spektrum zu höheren Energien Gesamtzerfallsrate $N \sim \int_0^{E_0} N(p) \ dp \sim E_0^5 \Rightarrow$ Bestimmung von G

$$^{14}\text{O} \rightarrow^{14}\text{N} + e^+ + \nu_e$$

 $(J^p = O^+ \rightarrow J^p = O^+ \text{ mit } |\mathcal{M}_{fi}|^2 = 1)$
 $G = 1.16 \cdot 10^{-5} \text{ GeV}^{-2}$

Für $m_{\nu} > 0$ gilt

$$N(p) dp F(Z, E) \sim p^2 (E_0 - E)^2 \sqrt{1 - \left(\frac{m_\nu c^2}{E_0 - E}\right) dp}$$

"KATRIN": Ziel ist $m_{\nu} \simeq 0.2 \text{ eV}/c^2$.

Erlaubte und verbotene Übergänge

 $|\mathcal{M}_{if}|^2$ maximal bei Spiegelkernen \rightarrow "übererlaubte" Übergänge:

"Erlaubte Übergänge":

Auswahlregeln:

Drehimpuls der Leptonen $\vec{j} = \vec{l} + \vec{s}$ mit s = 0, 1. Kernspins: $\vec{I}_i = \vec{I}_f + \vec{j}$ Bei vorgegebenen \vec{I}_i, \vec{I}_f kann j sein:

$$|I_i - I_f| \le j \le I_i + I_f$$
Für vorgegebenes j:

$$\Delta I | \le j$$

Fermi-Übergänge $(S=0) \colon |\Delta I| < l$ Fermi-Übergänge $(S=1) \colon |\Delta I| < l+1$

 $\begin{array}{l} \underline{\mbox{Erlaubte Übergänge: } l = 0 \mbox{ wegen punktförmiger Wechselwirkung bei nuklearen} \\ \underline{\mbox{Energien } (\simeq {\rm MeV} \ll M_w c^2). \\ \underline{\mbox{Verbotene Übergänge: } l \neq 0 \mbox{ und } \Delta I \geq 1. \end{array}$

Ist das Neutrino massiv?

Experimenteller Test $\bar{\nu}_e :$ "Endpunktmessungen" $e^- \text{-} \text{Spektrum}$

$$^{3}\mathrm{H} \longrightarrow ^{3}\mathrm{H} + e^{-} + \bar{\nu}_{e}$$

Q = 18.3 keV

Experimentelle Resultate (1996): $m_{\nu} < 4.35 \text{ eV}$ (Triotsk, Rußland) $m_{\nu} < 7.2 \text{ eV}$ (Mainz)

Nachweis des Neutrinos (Reines, Cowan 1956)

Wirkungsquerschnitt

all
gemein
$$\underbrace{a+b}_i \to \underbrace{c+d}_f$$

Fluß $\phi = n_a \cdot v_i$ Übergangsrate $W = \sigma \phi = \sigma \cdot n_a \cdot v_i$

$$W = \frac{2\pi}{\hbar} |\mathcal{H}_{if}|^2 \frac{dn}{dE_0}$$

$$\Rightarrow \sigma = |\mathcal{H}_{if}|^2 \frac{p_f^2 \, dp_f}{v_i \, dE_0} g_f$$

mit p_f = Impuls des Endzustands und g_f = Anzahl der möglichen Spinzustände. $\frac{dp_f}{dE_0} = \frac{1}{v_f}$ mit v_f = relative Geschwindigkeit von c und d.

$$\bar{\nu}_e + p \to n + e^+$$

"inverser β -Zerfall"

$$\Rightarrow \sigma = \frac{G^2}{\pi} \frac{p^2}{v_i v_f} (|\mathcal{M}_F|^2 + |\mathcal{M}_{GT}|^2)$$

 $v_i = v_f \simeq c$ und $p \simeq (E_{\nu} - q)/c$ mit Q = Schwellenenergie.

$$Q = (m_n + m_{e^+} - m_p)c^2 = 1,8 \text{ MeV} \qquad |\mathcal{M}_F|^2 + |\mathcal{M}_{GT}|^2 \simeq 4$$

Numerisch: $\sigma(\bar{\nu}_e p \to n e^+) = 9.6 \cdot 10^{-44} \text{ cm}^2 \cdot (E_{\nu} - Q)^2$, Genauigkeit $\simeq 2 \cdot 10^{-3}$! (Grund: σ korreliert mit τ_n)

Paritätsoperationen, Ladungskonjugation, Zeitumkehr P,C,T

Parität: $P: \vec{x} \xrightarrow{P} - \vec{x}$ Polare Vektoren (z.B. Impuls): $\vec{p} \to -\vec{p}$ Axiale Vektoren (z.B. Drehimpuls): $\vec{J} \to \vec{J}$

Ist $\psi(\vec{r})$ Wellenfunktion eines quantenmeschanischen Systems:

$$\left. \begin{array}{l} P\psi(\vec{r}) = \psi(-\vec{r}) \\ P^2\psi(\vec{r}) = \psi(\vec{r}) \end{array} \right\} P^2 = \mathbb{1} \ P \ \text{ist unit}\\ \text{irr} \end{array}$$

Gilt[H,P]=0ist Peine Erhaltungsgröße (
 H= Hamilton
operator). Eigenwerte von $P\colon \pm 1$

z.B.: Wellenfunktion des H-Atoms

$$P\psi(r,\theta,\phi) = (-1)^l \psi(r,\theta,\phi)$$

(l=Bahndrehimpuls-Quantenzahl $=0,1,2,\ldots)$ Auswahlregel für Dipolübergänge: Paritätsänderung! \rightarrow Eigenparität des Photons (Dipolstrahlung) $P_j=-1$

Bestimmung von Eigenparitäten

z.B. π^- : Pioneinfang in ²H: $\pi^- + {}^2H \rightarrow n + n$ Grundzustand ²H: l = 0, Einfang π^- aus der *s*-Schale

$$\rightarrow P_{\pi^-} \cdot P_p \cdot P_n \underbrace{(-1)^0}_1 = P_n P_n (-1)^{l*}$$

Gesamtdrehimpuls ²H: $J = 1 \rightarrow l^* = 1$, d.h. Parität (Anfangszustand) = -1. Mit $P_p = P_n = +1$ (Konvention) gilt $P_{\pi^-} = -1$.

 $,\tau$ - θ "-Paradoxon (1956)

$$K^+ \rightarrow 2\pi$$
 , $K^+ \rightarrow 3\pi$
(pos. Par.) (neg. Par.)

Existieren 2 Teilchen (" τ " und " θ "), die in allen Quantenzahlen identisch sind (aber in verschiedene Kanäle zerfallen), oder ist die Parität in der schwachen Wechselwirkung verletzt?

(Lee, Yang 1957) $\,$

Wu-Experiment (1957)

Tieftemperature
xperiment: $\beta\text{-Zerfall}$ von ^{60}Co be
i $T\simeq 10$ mK in einem Magnetfeld.

Paritätserhaltung bedeutete $I(\theta) = I(180^{\circ} - \theta)$ (keine Vorwärts-Rückwärtsassymmetrie) aber das experimentelle Resultat ist $I(\theta) = 1 - \frac{v}{c} \cos \theta$ mit $v = e^{-}$ -Geschwindigkeit.

Die e^- bevorzugen Emission gegen Spinrichtung von 60 Co (bzw. gegen eigene Spinrichtung!).

 \rightarrow Experimenteller Beweis für die Paritätsverletzung in der schwachen Wechselwirkung. Formal:

$$I(\theta) = 1 - \frac{v}{c}\cos\theta = 1 - \frac{\vec{\sigma} \cdot \vec{p}}{E/c}$$

mit $\vec{\sigma} :=$ Einheitsvektor in Spinrichtung und $\vec{p} :=$ Impulsvektor in Spinrichtung. $\vec{\sigma}\vec{p}$ ist ein "Pseudoskalar".

$$P(\vec{\sigma}\vec{p}) = -\vec{\sigma}\vec{p}$$

Die Paritätserhaltung verlangte, daß Erwartungswerte von Pseudoskalaren verschwinden.

Elektronen von $^{60}\mathrm{Co}$ sind teilweise polarisiert.

Schwache Wechselwirkung bevorzugt linkshändige e^- , und rechtshändige $\bar{\nu}_e$. Polarisationsgrad (= Helizität) der e^- (Vergleiche I(0) und $I(180^\circ)$:

$$I(0) = 1 - \frac{v}{c} \qquad I(180^{\circ}) = 1 + \frac{v}{c}$$
$$H = \frac{I(0) - I(180^{\circ})}{I(0) + I(180^{\circ})} = \frac{-2\frac{v}{c}}{2} = -\frac{v}{c}$$

Für Teilchen $(e^-,\mu^-\tau^-,\nu_e,\nu_\mu,\nu_{tau}):$

Für Antiteilchen:

$$H = +\frac{v}{c}$$

 $H=-\frac{v}{c}$

Für masselose Neutrinos:

$$H = -1 \qquad (\nu_e, nu_\mu, \nu_\tau)$$
$$H = +1 \qquad (\bar{\nu}_e, \bar{n}u_\mu, \bar{\nu}_\tau)$$

Paritätsverletzung neu betrachtet: $\xrightarrow{\nu_e}_{l.h.} (P) \xleftarrow{\nu_e}_{r.h.} (V_e)$

aber:
$$\xrightarrow{\nu_e}_{l.h.} (CP) \xleftarrow{}_{r.h.} \overleftarrow{\bar{\nu}_e}$$

Ist die schwache Wechselwirkung invariant gegenüber CP-Transformation? c := "Ladungskonjugation", z.B. $c |\pi^+\rangle = |\pi^-\rangle, c |e^-\rangle = |e^+\rangle$

Messung der Neutrinohelizität

Quelle:

$$^{152}\mathrm{Eu} + e^{-} \longrightarrow ^{152}\mathrm{Sm} + \nu_{e}$$

 e^- -Einfang aus der K-Schale)

Drehimpulserhaltung: Das rückgestoßen
e $^{152}\mathrm{Sm}^*$ hat die gleiche Polarisation wie das
 $\nu_e.$

Gammaemission und Absorption

In "Vorwärtsrichtung": γ hat die gleiche Polarisation wie $\nu_e.$ Resonanzabsorption:

$$\gamma + {}^{152}\text{Sm} \longrightarrow {}^{152}\text{Sm}^* \longrightarrow {}^{152}\text{Sm} + \gamma$$

nur möglich für die in Vorwärtsrichtung emittierten Photonen (Rückstoßenergie!).

 \rightarrow Messung der Polarisation der Photonen, die resonant absorbiert werden. Ergebnis:

$$H(\nu_e) = -1$$

5.2 Schwache Zerfälle seltsamer Teilchen: Cabibbo-Theorie

z. B. $K^- \to \mu^- \bar{\nu}_\mu$ oder $\Lambda^0 \to p e^- \bar{\nu}_e$ sind gegenüber ähnlichen Zerfällen ohne s-Quark Beteiligung unterdrückt.

Quarkbild

und $R(\pi^-/K^-\text{-Zerfall}) \simeq 19$ (Phasenraumbereinigt) $\Delta S = 1$ Übergänge sind unterdrückt.

Cabibbo (1963): Die an der schwachen WW teilnehmenden d', s'-Quarks sind gegenüber den Eigenzuständen d, s um einen Winkel gedreht:

$$\left(\begin{array}{c}d'\\s'\end{array}\right) = \left(\begin{array}{cc}\cos\theta_c & \sin\theta_c\\-\sin\theta_c & \cos\theta_c\end{array}\right) \left(\begin{array}{c}d\\s\end{array}\right)$$

Kopplung für $\Delta S = 0$ semileptonisch: $G \cos \theta_c$ und für $\Delta S = 1$: $G \sin \theta_c$

$$\begin{array}{c|c} \Delta S & \text{Rate} \\ \hline \pi \to \mu\nu & 0 & G^2 \cos^2 \theta_c \\ K \to \mu\nu & 1 & G^2 \sin^2 \theta_c \\ p \to n e^+ \bar{\nu}_e & 0 & G^2 \cos^2 \theta_c \\ K^- \to \pi^0 e^- \bar{\nu}_e & 1 & G^2 \sin^2 \theta_c \\ \mu^+ \to e^+ \nu_e \bar{\nu}_\mu & 0 & G^2 \end{array}$$

Bester experimenteller Wert: $\theta_c \simeq 13^\circ$. $\Rightarrow \cos^2 \theta_c \simeq 0.95$, $\sin^2 \theta_c \simeq 0.05$.

5.3 Schwache Mischungsverhältnis mit 6 Quarks

$$\left(\begin{array}{c}d'\\s'\\b'\end{array}\right) = \mathcal{U}_{CKM}\left(\begin{array}{c}d\\s\\b\end{array}\right)$$

 \mathcal{U}_{CKM} := unitäre "Mischungsmatrix" CKM: "Cabibbo-Kobayashi-Maskawa". Bedeutung der Matrixelemente $U_{qq'}$. $|U_{qq'}|^2 =$ Übergangswahrscheinlichkeit $q \leftrightarrow q'$ bei schwachen Prozessen. Zahl der freien Parameter von \mathcal{U}_{CKM} : 3 (reelle) Mischungswinkel, 1 (imaginäre) Phase.

$$\mathcal{U}_{ud} \simeq 0,975 \pm 0,001$$

 $\mathcal{U}_{cs} \simeq 0,974 \pm 0,001$
 $\mathcal{U}_{tb} \simeq 0,999 \pm 0,001$
 $\rightarrow \left(\begin{array}{c} u \\ \uparrow \\ d \end{array}\right), \left(\begin{array}{c} c \\ \uparrow \\ s \end{array}\right), \left(\begin{array}{c} t \\ \uparrow \\ b \end{array}\right) \quad nicht \text{ unterdrückt}$

 \mathcal{U}_{CKM} nahezu diagonal.

$$\begin{aligned} \mathcal{U}_{us} \simeq 0,220 \pm 0,004 (\text{Cabibbo}) \\ \\ \mathcal{U}_{cb} \simeq 0,040 \pm 0,008 \\ \\ \\ \mathcal{U}_{cd} \simeq 0,220 \pm 0,004 \\ \\ \\ \\ \\ \mathcal{U}_{ts} \simeq 0,040 \pm 0,008 \end{aligned}$$

Übergänge zwischen "benachbarten" Familien unterdrückt

$$U_{ub} \simeq 0,003 \pm 0,002$$

 $U_{td} \simeq 0,004$ bis 0,015

Übergänge Familie $1 \leftrightarrow 3$ stark unterdrückt. Bemerkung:

- i) Hier handelt es sich immerum geladene schwache WW (i.e. W^\pm Austausch)
- ii) Imaginäre Phase $\neq 0 \Rightarrow$ CP-Verletzung
- iii) Unitarität, z. B. $|\mathcal{U}_{ud}|^2 + |\mathcal{U}_{us}|^2 + |\mathcal{U}_{ub}|^2 = 1$. Experimentelle Überprüfung ist ein wichtiger Test des Standardmodells.

5.4 Neutrale Ströme

Entdeckung 1973 (Hasert et al.); ν_{μ} -Wechselwirkungen

 $R(Z^0)/R(W^{\pm})\simeq 0,25$
 $\nu_{\mu}N\rightarrow \nu_{\mu}+$ Hadronen ist ähnlich zu $e^-N\rightarrow e^-+$ Hadronen (hier elektromagnetische WW mit γ -Austausch). Elektroschwache Theorie:

Verknüpfung der W^{\pm}, Z^0 -Kopplung g mit der γ -Kopplung an geladene Leptonen und Quarks. In etwa $e \simeq g$ Da $G = \lim_{q^2 \to 0} \frac{g^2}{q^2 + M_W^2} = \frac{g^2}{M_W^2}$

$$\Rightarrow M_W \simeq \frac{e}{\sqrt{G}} \simeq 1 \cdot 10^2 \text{ GeV}$$

und ebenso M_Z

5.5 Nachweis W^{\pm}, Z^0

 $p\bar{p}\text{-Collider}$ mit $E_{p,\bar{p}}>1$ · 10² GeV. W-Erzeugung: $u+\bar{d}\to W^+,\,\bar{u}+d\to W^-.$ Z. B.:

 $\left. \begin{array}{c} \cdot + \nu_e \\ \mu^+ + \nu_\mu \\ \tau^+ + \nu_\tau \\ u + \bar{d} \\ s + \bar{d} \\ \vdots \end{array} \right\} \text{Hadronen}$ $W^+ \rightarrow e^+ + \nu_e$ Zerfall:

 Z^0 -Erzeugung: $u + \bar{u} \rightarrow Z^0, d + \bar{d} \rightarrow Z^0$ Z^0 -Zerfall: $Z^0 \to e^+e^-, \mu^+\mu^-, \tau^+\tau^-$ Hadronen (aus $q\bar{q}$). Zerfall:

$$\begin{array}{c} \Longrightarrow \\ & \swarrow \\ & \nu_e \end{array} \xrightarrow{} \\ & \psi_e \end{array} , \text{verboten}^{(\circ)} (\theta = 180^{\circ})$$

 $\Rightarrow W^+ \rightarrow e^+ \nu_e$ erfolgt mit einer Winkelverteilung $\sim (1 + \cos \theta)^2$.

Experimentelle Resultate:

 $M_{W^{\pm}} = (80, 33 \pm 0, 15) \frac{\text{GeV}}{c^2}$ $M_{Z^0} = (91, 187 \pm 0, 007) \ \frac{\text{GeV}}{c^2}.$

Experimentelle Signatur: Rein leptonische Signale (z. B. e^+ , ν_e). Rate gegenüber $p\bar{p}\text{-}\text{Hadronen}$ (durch starke WW) um \sim 1 \cdot 10^9 unterdrückt!. W^{\pm} : Ein gelad. Lepton mit großem "Transversalimpuls"

die W-Bosonen sind polarisiert (P-Verletzung!)

$$\begin{array}{c} \stackrel{\Longrightarrow}{\longleftarrow} & \stackrel{\longrightarrow}{\longleftarrow} & \stackrel{\longrightarrow}{e^{+}} & \text{,erlaubt"} (\theta = 0^{\circ}) \\ \stackrel{\Longrightarrow}{\longleftarrow} & \stackrel{\longrightarrow}{e^{+}} & \stackrel{\longrightarrow}{\nu_{e}} & \text{,verboten"} (\theta = 180^{\circ}) \end{array}$$

5.5. NACHWEIS W^{\pm}, Z^0

Kinematik $\rightarrow m_W = 80, 2$ GeV. Nachweis Z^0 in e^+e^- -Collidern:

$$e^+e^- \to Z^0 \to f\bar{f}$$

 $f\colon$ (Fermi-) Elementarteil
chen. Zerfallsbreite: $\Gamma_Z=\frac{1}{\tau_Z}=\sum_f \Gamma_f$

i) Hadronen:

$$\Gamma_h = \Gamma_u + \Gamma_d + \Gamma_s + \Gamma_c + \Gamma_b$$

- $(m_t \simeq 180 \text{ GeV} > m_z/2)$
- ii) geladene Leptonen:

$$\Gamma_l = \Gamma_e + \Gamma_\mu + \Gamma_\tau \simeq 3 \cdot \Gamma_e$$

 $(m_\tau \ll m_z/2)$

iii) Neutrinos:

$$\Gamma_{\nu} = N_{\nu} \cdot \Gamma_{\nu}$$

mit $N_{\nu}:$ Anzahl der Neutrinofamilien

$$\Rightarrow N_{\nu} = \underbrace{\frac{1}{\Gamma_{\nu}}}_{Theorie} \cdot \underbrace{(\Gamma_{Z} - \Gamma_{h} - 3\Gamma_{e})}_{Experiment}$$
$$\Rightarrow N_{\nu} = 2,991 \pm 0,016$$

 $m_z = 91, 2 \text{ GeV}/c^2$

Kapitel 6

Standardmodell

SM: Theorie der starken WW (QCD) & Theorie der <u>elektroschwachen</u> WW.

QCD: Kap. 2, Eichtheorie mit der Symmetriegruppe SU(3)

- elektroschwache Theorie: wird im Folgenden behandelt. Eichtheorie, Symmetriegruppe $SU(2) \times U(1)$ SU(2): Isospin, U(1): Hyperladung $(U(1) \neq U(1)_{em})$
- **Strategie:** 1) Auffinden der Symmetriegruppe, globale Eichtransformationen, \mathcal{L}_0 invariant
 - 2) globale \rightarrow lokale Eichinvarianz mit $\partial_{\mu} \rightarrow \mathcal{D}_{\mu}$, Eichfelder, WW und Dynamik der Eichfelder
 - 3) Symmetriebrechung (neu!), nur für EW

6.1 Chirale Fermionen

Dirac-Matrizen γ^{μ}

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \gamma^{k} = \begin{pmatrix} 0 & \sigma_{k} \\ -\sigma_{k} & 0 \end{pmatrix}$$
$$\gamma_{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\begin{array}{l} \{\gamma_5,\gamma^\mu\}=0,\,\bar{\gamma}_5=-\gamma_5,\,\gamma_5^2=1\\ (\text{wobei}\;\bar{\Gamma}\equiv\gamma^0\Gamma^\dagger\gamma^0) \end{array} \end{array}$

Dirac-Spinor: $\psi(x)$

links-chiraler (auch: linkshändiger) Spinor: $\psi_L = \frac{1 - \gamma_5}{2} \psi$ rechts-chiraler (auch: rechtshändiger) Spinor: $\psi_R = \frac{1 + \gamma_5}{2} \psi$

$$\left(\frac{1\pm\gamma_5}{2}\right)^2 = \frac{1\pm\gamma_5}{2}$$
: Projektions-Operatoren auf R-L-Chiralität

 $\equiv J_B^{\mu}$

Für $|\vec{p}| \gg m$ gilt: $\frac{1}{2}\gamma_5 u_{\pm}(p) = \pm \frac{1}{2}u_{\pm}(p)$ wobei $u_{\pm}(p)$ Helizitätseigenzustände zu $\pm \frac{1}{2}$ sind Helizität \simeq Chiralität für große Impulse

•
$$\bar{\psi}_L \gamma^\mu \psi_L = \overline{\frac{1-\gamma_5}{2}\psi} \gamma^\mu \frac{1-\gamma_5}{2} \psi = \bar{\psi} \underbrace{\underbrace{\frac{1-\bar{\gamma}_5}{2}\gamma^\mu}_{\frac{1+\gamma_5}{2}\gamma^\mu = \gamma^\mu \frac{1-\gamma_5}{2}}}_{\underbrace{\frac{1+\gamma_5}{2}\gamma^\mu = \gamma^\mu \frac{1-\gamma_5}{2}}} \underbrace{\frac{1-\gamma_5}{2}\psi}_{L} = \bar{\psi}\gamma^\mu \frac{1-\gamma_5}{2}\psi \equiv J_L^\mu$$

- $\bar{\psi}_R \gamma^\mu \psi_R = \bar{\psi} \gamma^\mu \frac{1+\gamma_5}{2} \psi$ L-R chirale Ströme.
- $\bar{\psi}_L \gamma^\mu \partial_\mu \psi_L = \bar{\psi} \gamma^\mu \frac{1 \gamma_5}{2} \partial_\mu \psi_L$ $\bar{\psi}_R \gamma^\mu \partial_\mu \psi_R = \bar{\psi} \gamma^\mu \frac{1 + \gamma_5}{2} \partial_\mu \psi_R$
- $\bar{\psi}_L \psi_L = \bar{\psi}_R \psi_R = 0, \ \bar{\psi}_L \psi_R = \psi \frac{1+\gamma_5}{2} \psi, \ \bar{\psi}_R \psi_L = \psi \frac{1-\gamma_5}{2} \psi$ $\mathcal{L}_0 = \bar{\psi} i \gamma^\mu \partial_\mu \psi m \bar{\psi} \psi = \bar{\psi}_L i \gamma^\mu \partial_\mu \psi_L + \bar{\psi}_R i \gamma^\mu \partial_\mu \psi_R m (\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$
- Vektorstrom: $J_V^{\mu} = \bar{\psi}\gamma_{\mu}\psi = J_L^{\mu} + J_R^{\mu}$ Axialvektorstrom: $J_A^{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5\psi = -J_L^{\mu} + J_R^{\mu}$

Symmetriegruppe der elektromagnetischen 6.2WW

Leptonen:	$\left(\begin{array}{c}\nu_e\\e\end{array}\right)$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)$	$\left(\begin{array}{c}\nu_{\tau}\\\tau\end{array}\right)$
Hadronen:	$\left(\begin{array}{c} u \\ d \end{array}\right)$	$\left(\begin{array}{c}c\\s\end{array}\right)$	$\left(\begin{array}{c}t\\b\end{array}\right)$
Generation:	1.	2.	3.

Zustände des *Isospins*, mit $I_3 = \pm \frac{1}{2}$: $\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}$ mit $I_3 \begin{pmatrix} 1\\0 \end{pmatrix} = +\frac{1}{2} \begin{pmatrix} 1\\0 \end{pmatrix}, I_3 \begin{pmatrix} 0\\1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 0\\1 \end{pmatrix}$

6.2.1 Isospin

 $\vec{I} = (I_1, I_2, I_3)$ Generatoren mit $[I_a, I_b] = i\epsilon_{abc}I_c$: Lie-Algebra der SU(2). I_a : Erzeugende (Generatoren) der SU(2).

SU(2): Gruppe der unitären 2 × 2-Matrizen, mit det = +1; gleiche Lie-Algebra wie Drehgruppe, gleiche irreduzible Darstellungen: (2I+1)(2I+1) dimensional, $I = \underbrace{0}_{\text{Singlett}}, \underbrace{\frac{1}{2}}_{\text{Dublett}}, \underbrace{\frac{1}{2}}_{\text{Triplett}}, \underbrace{\frac{3}{2}, \dots; \vec{I}^2}_{\vec{I}^2} = I(I+1)\mathbb{1}$

$$I = \frac{1}{2}: \text{ Fundamental-Darstellung}$$
$$I = \frac{1}{2}: I_a = \frac{1}{2}\sigma_a, \ \vec{I} = \frac{1}{2}\vec{\sigma}, \ I_3 \left(\begin{array}{c} \nu\\ e \end{array}\right) = \left(\begin{array}{c} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{array}\right) \left(\begin{array}{c} \nu\\ e \end{array}\right) = \frac{1}{2} \left(\begin{array}{c} \nu\\ -e \end{array}\right)$$

6.2.2 Hyperladung Y

definiert über die Gell-Mann-Nishijima-Relation:

$$Q = I_3 + \frac{Y}{2}$$

Q: elektrische Ladung

Dubletts sind Eigenzustände von Y:

$$Y\left(\begin{array}{c}\nu\\e\end{array}\right) = 2Q\left(\begin{array}{c}\nu\\e\end{array}\right) - 2I_3\left(\begin{array}{c}\nu\\e\end{array}\right) = 2\left(\begin{array}{c}0\\-e\end{array}\right) - \left(\begin{array}{c}\nu\\-e\end{array}\right) = -\left(\begin{array}{c}\nu\\e\end{array}\right)$$
$$Y\left(\begin{array}{c}u\\d\end{array}\right) = 2Q\left(\begin{array}{c}u\\d\end{array}\right) - 2I_3\left(\begin{array}{c}u\\d\end{array}\right) = \frac{1}{3}\left(\begin{array}{c}u\\d\end{array}\right)$$

Dubletts bilden auch Darstellungen einer $U(1) \equiv U(1)_Y$; Generator: $Y = y\mathbb{1}$

 $[I_a,Y]=0$ zusammen mit $[I_a,I_b]=i\epsilon_{abc}I_c$ ist dies die Lie-Algebra der Gruppe $SU(2)\times U(1)$

$$\begin{pmatrix} \nu \\ e \end{pmatrix}: I = \frac{1}{2}, y = -1; \begin{pmatrix} u \\ d \end{pmatrix}: I = \frac{1}{2}, y = +\frac{1}{3}$$

6.2.3 $SU(2) \times U(1)$ Transformationen

(am Beispiel von $\begin{pmatrix} \nu \\ e \end{pmatrix}$) globale Transformationen, Eichtransformationen

• infinitesimal:

$$\left(\begin{array}{c}\nu\\e\end{array}\right) \to \left(1 + i\delta\theta_a I_a + iS\theta_y Y\right) \left(\begin{array}{c}\nu\\e\end{array}\right) \qquad \delta\theta_a, \delta\theta_y \in \mathbb{R}$$

• endlich:

$$\left(\begin{array}{c}\nu\\e\end{array}\right) \to e^{i\theta_a I_a} e^{i\theta_y Y} \left(\begin{array}{c}\nu\\e\end{array}\right)$$

dabei:

$$e^{i\theta_y Y} \begin{pmatrix} \nu \\ e \end{pmatrix} = e^{i\theta_y Y} \begin{pmatrix} \nu \\ e \end{pmatrix}, \qquad y = -1$$

Phasentransformation $U(1) \equiv U(1)_Y e^{iI_a\theta_a}$: analog zu Drehungen bei Spin $\frac{1}{2}$

Anmerkung:

Lie-Gruppen G_1 mit $T_a^{(1)},\,G_2$ mit $T_a^{(2)}\Rightarrow G_1\times G_2$ hat die Lie-Algebra:

$$\begin{split} \left[T_a^{(1)}, T_b^{(1)}\right] &= i f_{abc}^{(1)} T_c^{(1)}, \quad \left[T_a^{(2)}, T_b^{(2)}\right] = i f_{abc}^{(2)} T_c^{(2)} \\ &\left[T_a^{(1)}, T_b^{(2)}\right] = 0 \quad \forall a, b \end{split}$$

6.2.4 Chirale Struktur der Darstellungen

• Dubletts: $\begin{pmatrix} \nu \\ e \end{pmatrix}$ etc. nur für *linkshändige* Felder, d.h. $\nu = \nu_L = \frac{1-\gamma_5}{2}\nu$, $e_L = \frac{1-\gamma_5}{2}e$. (Bezeichnung: $\nu \equiv \nu(x)$, $e \equiv e(x)$ für Spinoren zu ν und e, ...)

$$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \begin{pmatrix} u_L \\ d_L \end{pmatrix}: I = \frac{1}{2} \quad y = -1 \quad \text{(Leptonen)} \\ y = +\frac{1}{3} \quad \text{(Quarks)}$$

• Singletts für rechtshändige Felder: e_R , u_R , d_R (vorerst kein ν_R)

$$\boxed{I=0} \quad Y=2Q \quad = \begin{cases} -2 \text{ für } e_R \\ +\frac{4}{3} \text{ für } u_R \\ -\frac{2}{3} \text{ für } d_R \end{cases}$$

L-R-Felder sind in verschiedenen Darstellungen

- $(\bar{\nu}_L, \bar{e}_L)\gamma^{\mu}\partial_{\mu}\begin{pmatrix} \nu_L\\ e_L \end{pmatrix}$ etc. sind invariant unter $\rightarrow e^{i\frac{\theta_a}{2}\sigma_a}e^{i\theta_y Y}\begin{pmatrix} \nu_L\\ e_L \end{pmatrix}$, (Y = -1).
- $\bar{e}_R \gamma^\mu \partial_\mu e_R$ etc. sind invariant unter $\rightarrow e^{i\theta_y Y} e_R$, (y = -2)
- $\bar{e}_L e_R$, $\bar{e}_R e_L$ sind *nicht* invariant $\Rightarrow m_e \bar{e}e = m_e(\bar{e}_L e_R + \bar{e}_R e_L)$ nicht invariant Eine eichinvariante Lagrange-Dichte \mathcal{L}_0 darf keine Massenterme enthalten (!) Daher vorerst: alle m = 0 (Leptonen und Quarks)
- Lagrange-Dichte für freie Felder, invariant:

$$\begin{aligned} \mathcal{L}_{0} &= (\bar{\nu}_{L}, \bar{e}_{L})i\gamma^{\mu}\partial_{\mu} \left(\begin{array}{c} \nu_{L} \\ e_{L} \end{array}\right) + \bar{e}_{L}i\gamma^{\mu}\partial_{\mu}e_{R} + \\ &+ (\bar{u}_{L}, \bar{d}_{L})i\gamma^{\mu}\partial_{\mu} \left(\begin{array}{c} u_{L} \\ d_{L} \end{array}\right) + \bar{d}_{R}i\gamma^{\mu}\partial_{\mu}d_{R} + \\ &+ \bar{u}_{R}i\gamma^{\mu}\partial_{\mu}u_{R} \equiv \\ &\equiv \bar{\nu}_{L}i\partial\!\!\!/\nu_{L} + \bar{e}i\partial\!\!\!/e + \bar{u}i\partial\!\!\!/u + \bar{d}i\partial\!\!\!/d \end{aligned}$$

Globale Eichtransformation:

$$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \to e^{i\frac{\theta_a}{2}\sigma_a} e^{i\theta_y(-1)} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \to e^{i\frac{\theta_a}{2}\sigma_a} e^{i\theta_y(\frac{1}{3})} \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$

$$e_R \to e^{i\theta_y(-2)} e_R$$

$$u_R \to e^{i\theta_y(\frac{4}{3})} u_R$$

$$d_R \to e^{i\theta_y(-\frac{2}{3})} d_R$$

$$\begin{pmatrix} \bar{\nu}_L \\ \bar{e}_L \end{pmatrix} \to (\bar{\nu}_L, \bar{e}_L) (e^{i\frac{\theta_a}{2}\sigma_a})^{\dagger} e^{i\theta_y}$$

$$\begin{pmatrix} \bar{u}_L \\ \bar{d}_L \end{pmatrix} \to (\bar{u}_L, \bar{d}_L) (e^{i\frac{\theta_a}{2}\sigma_a})^{\dagger} e^{i\theta_y(-\frac{1}{3})}$$
$$\bar{e}_R \to \bar{e}_R e^{i\theta_y(2)}$$
$$\bar{u}_R \to \bar{u}_R e^{i\theta_y(-\frac{4}{3})}$$
$$\bar{d}_R \to \bar{d}_R e^{i\theta_y(\frac{2}{3})}$$

Daraus lässt sich unmittelbar die Invarianz der verschiedenen Terme in \mathcal{L}_0 ablesen.

6.3 Lokale Eichinvarianz, Wechselwirkungen

lokale Eichtransformation $\in SU(2) \times U(1)$: $\theta_a = \theta_a(x), \ \theta_y = \theta_y(x)$ reelle Funktionen erfordert 4 *Eichfelder*:

$$I_a \leftrightarrow W^a_\mu \qquad SU(2)$$
$$Y \leftrightarrow B_\mu \qquad U(1)$$

kovariante Ableitung:¹

$$\mathcal{D}_{\mu} = \partial_{\mu} - ig_2 I_a W^a_{\mu} + ig_1 \frac{Y}{2} B_{\mu}$$

mit g_1, g_2 : Kopplungskonstanten für SU(2), U(1) (beachte: I_a, Y für jede Darstellung gesondert wählen)

Dubletts: $\mathcal{D}^{(L)}_{\mu} = \partial_{\mu} - ig_2 \frac{\sigma_2}{2} W^a_{\mu} + ig_1 \frac{Y}{2} B_{\mu}$

Singletts: $\mathcal{D}^{(R)}_{\mu} = \partial_{\mu} + ig_1 \frac{Y}{2} B_{\mu}$

Damit erhält man (1. Generation):

$$\begin{split} \mathcal{L}_{0} &\to (\bar{\nu}_{L}, \bar{e}_{L}) i \gamma^{\mu} (\partial_{\mu} - i \frac{g_{2}}{2} \sigma_{a} W_{\mu}^{a} - i \frac{g_{1}}{2} B_{\mu}) \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \\ &+ \bar{e}_{R} i \gamma^{\mu} (\partial_{\mu} - i g_{1} B_{\mu}) e_{R} + \\ &+ (\bar{u}_{L}, \bar{d}_{L}) i \gamma^{\mu} (\partial_{\mu} - i \frac{g_{2}}{2} \sigma_{a} W_{\mu}^{a} + i \frac{g_{1}}{6} B_{\mu}) \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \\ &+ \bar{u}_{R} i \gamma^{\mu} (\partial_{\mu} + i \frac{g_{1}}{2} \cdot \frac{4}{3} B_{\mu}) u_{R} + \\ &+ \bar{d}_{R} i \gamma^{\mu} (\partial_{\mu} - i \frac{g_{1}}{2} \cdot \frac{2}{3} B_{\mu}) d_{R} = \\ &= \mathcal{L}_{0} + \frac{g_{2}}{2} (\bar{\nu}_{L}, \bar{e}_{L}) \gamma^{\mu} \sigma_{a} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} W_{\mu}^{a} + \frac{g_{1}}{2} (\bar{\nu}_{L}, \bar{e}_{L}) \gamma^{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} B_{\mu} + \\ &+ g_{1} \bar{e}_{R} \gamma^{\mu} e_{R} B_{\mu} + (\text{Quarks}) \equiv \\ &\equiv \mathcal{L}_{0} + \mathcal{L}_{int} \text{ (Fermion-Eichboson)} \end{split}$$

¹Vorzeichen und Faktor $\frac{1}{2}$ bei B_{μ} sind Konvention

KAPITEL 6. STANDARDMODELL

$$\mathcal{L}_{int} = \frac{g_2}{2} (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} (\sigma_1 W^1_{\mu} + \sigma_2 W^2_{\mu}) \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$
(CC)

$$+ \frac{g_2}{2} (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} W^3_{\mu} + \\ + \frac{g_1}{2} (\bar{\nu}_L \gamma^{\mu} \nu_L) B_{\mu} + \frac{g_1}{2} (\bar{e}_L \gamma^{\mu} e_L) B_{\mu} + \\ + g_1 (\bar{e}_R \gamma^{\mu} e_R) B_{\mu} \end{pmatrix}$$
(NC)

CC: charged current (geladener Strom); NC: neutral current (neutraler Strom) Schiebe-Operatoren: $I_1 \pm iI_2 = I_{\pm} = \frac{1}{2}(\sigma_1 \pm i\sigma_2)$

$$I_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad I_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

geladene Felder:
$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}(W_{\mu}^{1} \mp iW_{\mu}^{2})}$$
$$\Rightarrow \frac{1}{2}(\sigma_{1}W_{\mu}^{1} + \sigma_{2}W_{\mu}^{2}) = \frac{1}{\sqrt{2}(I_{+}W_{\mu}^{+} + I_{-}W_{\mu}^{-})}$$

(i) (CC):

$$(CC) = \frac{g_2}{\sqrt{2}} (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} I_+ \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} W^+_{\mu} + \frac{g_2}{\sqrt{2}} (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} I_- \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} W^-_{\mu} = \\ = \frac{g_2}{\sqrt{2}} \left\{ (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} \begin{pmatrix} e_L \\ 0 \end{pmatrix} W^+_{\mu} + (\bar{\nu}_L, \bar{e}_L) \gamma^{\mu} \begin{pmatrix} 0 \\ \nu_L \end{pmatrix} W^-_{\mu} \right\} = \\ = \frac{g_2}{\sqrt{2}} \left\{ (\bar{\nu}_L \gamma^{\mu} e_L) W^+_{\mu} + \bar{e}_L \gamma^{\mu} \nu_L W^-_{\mu} \right\} = \\ = \frac{g_2}{\sqrt{2}} \left\{ \bar{\nu} \gamma^{\mu} \frac{1 - \gamma_5}{2} e \cdot W^+_{\mu} + \bar{e} \gamma^{\mu} \frac{1 - \gamma_5}{2} \nu \cdot W^-_{\mu} \right\}$$

beschreibt WW zwischen W^{\pm} und ν, e :

• Feynman-Graphen für Vertices:

(ii) (NC):

$$\begin{split} (NC) &= \frac{g_2}{2} (\bar{\nu}_L \gamma^\mu \nu_L) W^3_\mu - \frac{g_2}{2} (\bar{e}_L \gamma^\mu e_L) W^3_\mu + \\ &+ \frac{g_1}{2} (\nu_L \gamma^\mu \nu_L) B_\mu + \frac{g_1}{2} (\bar{e}_L \gamma^\mu e_L) B_\mu + \\ &+ g_1 (\bar{e}_R \gamma^\mu e_R) B_\mu = \\ &= \frac{1}{2} (\bar{\nu}_L \gamma^\mu \nu_L) (g_2 W^3_\mu + g_1 B_\mu) + \\ &= \frac{1}{2} (\bar{e}_L \gamma^\mu e_L) (-g_2 W^3_\mu + g_1 B_\mu) + \\ &+ (\bar{e}_R \gamma^\mu e_R) g_1 B_\mu \end{split}$$

 W^3_μ, B_μ sind neutrale Vektorbosonen, keines kann das Photon sein, da

- keine Kopplung an ν
- gleiche Kopplung für L und R

Ansatz: Linearkombination

invers:

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \end{pmatrix}$$
$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix}$$
$$\boxed{\theta_{W}: \text{ elektroschwacher Mischungsverhältnis}}$$

 $A_{\mu}:$ Photon (?) und $Z_{\mu}:$ Z-Boson sollen physikalische Felder sein, d.h. zugehörige Teilchen beschreiben.

Damit erhält man für die ν -WW:

$$\frac{1}{2}(\bar{\nu}_L\gamma^{\mu}\nu_L)\{(-s_Wg_2+c_Wg_1)A_{\mu}+(g_2c_W+g_1s_W)Z_{\mu}\}$$

Wenn A_{μ} das Photonfeld sein soll, darf es nicht an ν koppeln, daher:

$$\boxed{s_W g_2 = c_W g_1} \tag{(*)}$$

 $\Rightarrow \tan \theta_W = \frac{g_1}{g_2}; \ g_2 c_W + g_1 s_W = g_2 c_W + \frac{s_W^2}{c_W} g_2 = \frac{g_2}{c_W} (c_W^2 + s_W^2) = \frac{g_2}{c_W}$ Also: $\frac{g_2}{2c_W} (\bar{\nu}_L \gamma^{\mu} \nu_L) \cdot Z_{\mu}$ Vertex:

Mit * erhält man:

•
$$-g_2 W_{\mu}^3 + g_1 B_{\mu} =$$

$$= 2s_W g_2 A_{\mu} + \left(\frac{s_W^2}{c_W} g_2 + c_W g_2\right) Z_{\mu} =$$

$$= 2s_W g_2 A_{\mu} + \frac{g_2}{c_W} (2s_W^2 - 1) Z_{\mu}$$
•
$$g_1 B_{\mu} = s_W g_2 A_{\mu} + \frac{s_W^2}{c_W} g_2 Z_{\mu}$$

und damit für die e-WW:

 mit

$$a_e = -\frac{1}{2} = I_3^{(3)}$$

$$v_e = -\frac{1}{2} + 2s_W^2 = I_3^e - 2Q_e s_W^2$$

Dasselbe Spiel für die Quarks ergibt:

$$\mathcal{L}_{NC} = -e \sum_{f} Q_f \bar{\psi}_f \gamma^{\mu} \psi_f A_{\mu} + \frac{g_2}{2c_W} \sum_{f} \bar{\psi}_f \gamma^{\mu} (v_f - a_f \gamma_5) \psi_f \cdot Z_{\mu}$$

$$a_f = I_3^f$$
$$v_f = I_3^f - 2Q_f s_W^2$$

Vertices für NC:

 $(f = \nu, e, u, d, \dots)$

Beachte: g_1, g_2 sind universale Konstanten, äquivalent:

$$g_2 = \frac{e}{\sin \theta_W}, \qquad \frac{g_2^2}{4\pi} = \frac{e^2}{4\pi \sin^2 \theta_W}$$
²
 $\alpha_2 = \frac{\alpha}{\sin^2 \theta_W} = \frac{1}{31,5} = 0,032 \qquad \alpha = \frac{1}{137}$

Kopplung der schwachen WW > Kopplung der em WW

Eichfelder

$$W^a_\mu, B_\mu \leftrightarrow \underbrace{W^{\pm}_\mu, Z_\mu}_{\text{schw. WW}}, \underbrace{A_\mu}_{\text{e.m. WW}}$$

eigene Dynamik, Konstruktion längs Richtlinien im Kap. 2.2

 \rightarrow zunächst Feldstärken:

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$
$$W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g_{2}\epsilon_{abc}W^{b}_{\mu}W^{c}_{\nu}$$

 $\rightarrow\,$ dann Lagrange-Dichte:

$$\mathcal{L}_{W,B} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} \sum_{a} W^{a}_{\mu\nu} W^{a,\mu\nu}$$

enthält trilineare und quadrilineare WW-Terme

²experimentell: $\sin^2 \theta_W \simeq 0,23$

außerdem zu beachten: Propagatoren aus den quadratischen Termen $(\partial_{\mu}, B_{\nu} - \partial_{\nu} B_{\mu})^2, \, (\partial_{\mu} W_{\nu}^a - \partial_{\nu} W_{\mu}^a)^2) \rightarrow$ Feldgleichungen \rightarrow Greensche Funktionen

Problem:

alle Eichfelder sind masselos

OK für Photon, jedoch $W^{\pm}, Z \text{ sind massiv:}^3 M_W = 80 \text{ GeV}, M_Z = 91 \text{ GeV}$

nach den Fermion-Massen ist dies ein weiteres Massenproblem. \Rightarrow Addieren von Massentermen möglich:

$$\mathcal{L} \to \mathcal{L} + \frac{M_Z^2}{2} Z_\mu Z^\mu + M_W^2 W_\mu^+ W^{-\mu}$$

führt jedoch zu schwerwiegenden Problemen:

- WQ divergiert für W W (Z Z)-Streuung bei hohen Energien, im Widerspruch zur Unitarität der S-Matrix
- Theorie nicht mehr renormierbar, unkontrollierbare Divergenzen in höheren Ordnungen.

 $^{^3}$ weiteres Argument: $M_W=0, M_Z=0 \Rightarrow$ Reichweite der schwachen WW= $\infty,$ analog zum em. Feld

Ausweg: Higgs-Mechanismus

Einführung von Massentermen unter Beibehaltung der Eichinvarianz durch die *spontane Brechung* der elektroschwachen Symmetrie:

- (i) Symmetrie von \mathcal{L} erhalten
- (ii) Symmetrie des Grundzustands gebrochen

Beispiele aus anderen Gebieten:

- Ferromagnetismus (Drehsymmetrie)
- Supraleitung (U(1)-Symmetrie)

Higgs-Mechanismus ist entlehnt aus der Festkörperphysik, Analogon zur Supraleitung. 4

6.4 Symmetriebrechung, Higgs-Mechanismus

Zunächst ein Beispiel mit U(1)-Symmetrie. Betrachte komplexes Skalarfeld $\phi(x)$ mit einer Selbst-Kopplung.

$$\mathcal{L} = (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - V(\phi) = |\partial_{\mu}\phi|^2 - V(\phi)$$

 $\mathcal{L} \to \mathcal{H}$ Hamilton-Dichte (=Energiedichte)

$$\mathcal{H} = \underbrace{|\partial_0 \phi|^2 + |\nabla \phi|^2}_{\geq 0} + V(\phi)$$

Minimum von \mathcal{H} = Minimum von V für $\phi = \phi_0 = konst$.

 $\phi_0 = v$: Grundzustand, Vakuum

 $V = V(|\phi|)$: \mathcal{L} symmetrisch unter $\phi \to \phi' = e^{i\alpha}\phi$, kontinuierlich U(1).

v = 0: $\phi_0 = v = 0$ symmetrisch unterU(1)

 $v \neq 0$: $\phi'_0 = e^{i\alpha} v \neq \phi_0$ nicht symmetrisch

jedoch: $V(\phi_0) = V(\phi_0') \Rightarrow$ entartetes Vakuum

spontane Brechung der Symmetrie

 $^{^4 \}mathrm{Anderson},$ Brout, Englert, Kibble, Higgs angewandt auf schwache WW: Weinberg, Salam (1967)

$$V(\phi) = V(\eta)$$

Minimum bei $|\phi|=v$: V'(v)=0,
V''(v)>0. Entwickeln um v: $\eta(x)=v+\frac{1}{\sqrt{2}}H(x)$ 1 1

$$V(\eta) = \underbrace{V(v)}_{\text{const, irrelevant}} + \frac{1}{2}V''(v) \cdot \frac{1}{2}H^2 + \dots$$
$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}H)(\partial^{\mu}H) - \frac{1}{2}H^2 \cdot \underbrace{\frac{1}{2}V''(v)}_{=M_{H}^{2} > 0} + v^{2}(\partial_{\mu}\theta)(\partial^{\mu}\theta) + \text{WW-Terme}$$

H-Feld massiv,

 $\theta\text{-}\mathrm{Feld}$ masselos, "Goldstone-Feld"

spontan gebrochene Symmetrie $\Rightarrow \exists$ masseloses Goldstone-Feld

Spezialfall des Goldstone-Theorems

kontinuierliche Symmetrie, Generatoren T_1, \ldots, T_N

für $a = 1, \dots, k$ gebrochene Symmetrie $T_a \phi_0 \neq 0$

 $T_a\phi_0 = 0$ für a=k+1,...,N ungebrochen

 \Rightarrow es gibtkmasselose Goldstone-Felder. In Kombination mit Eichtheorie:

U(1)-Eichtheorie

 $A_{\mu}(x)$ Eichfeld, $D_{\mu} = \partial_{\mu} - igA_{\mu}$

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} \qquad \text{eichinvariant}$$

wie zuvor: Minimum von V bei $\phi_0 = v, v \neq 0 \mathcal{L}$ symmetrisch unter

$$\phi(x) \to \phi'(x) = e^{e\alpha(x)\phi(x)}$$

$$A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{g}\partial_{\mu}\alpha(x)$$

 $\phi(x)=\eta(x)e^{i\theta(x)},\eta=v+\frac{H}{\sqrt{2}}.$ Wähle $\alpha(x)=-\theta(x):$
 $\phi'(x)=\eta(x),$ $A'_{\mu}(x)=A_{\mu}(x)+\frac{1}{g}\partial_{\mu}\theta(x)$

$$\Rightarrow \mathcal{L}(\phi, A_{\mu}) = \mathcal{L}(\phi', A'_{\mu}) = |(\partial_{\mu} - igA'_{\mu})(v + \frac{H}{\sqrt{2}})|^2 - V(\eta) - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}$$

 Das masselose θ-Feld ist verschwunden, θ-Feld ist unphysikalisch, da eichabhängig. Ordnen nach Potenzen ergibt:

$$\mathcal{L} = \underbrace{-\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + v^2g^2A'_{\mu}A^{\mu}}_{\text{massives A-Feld, $v^2g^2 = \frac{MA^2}{2}, M_A \sim vg$}} + \underbrace{\frac{1}{2}[(\partial_{\mu}H)^2 - M_H^2]}_{\text{neutrales Skalarfeld, massiv}} + \dots$$

Propagator:

$$\overset{i}{\underset{k \to}{\lim}} \underbrace{ \begin{pmatrix} -g_{\mu\nu} + \frac{h_{\mu}h_{\nu}}{M_{A}^{2}} \end{pmatrix}}_{\sum (3 \text{ phys. Polarisationen})}$$

• A-Feld ist massiv, hat 3 Polarisationszustände (2 transversale und 1 longitudinalen)

	ϕ	A_{μ}
Symmetrie	H, θ	2 transversale
manifest	,•	Polarisationen
physikalischer		
Inhalt	77	3 Polarisationen
manifest		(1 longitudinale)
(unitäre Eichung)		

 θ -Feld \rightarrow longitudinaler Polarisationszustand des A_{μ} -Feldes Beachte: \mathcal{L} ist immer noch eichinvariant. Die Brechnung der Symmetrie, die zur A-Masse führt, ist genügend "glatt", zerstört nicht die Renormierbarket. Für höhere Ordnungen: wähle Eichgung so, dass Propagator

$$\bullet \bullet \bullet \bullet \bullet = -i \frac{g_{\mu\nu}}{h^2 - M_A^2}$$

Verhalten für $h^2\to\infty$ wie in der masselosen Theorie. Pries: unphysikalische Zustände in inneren Linien.

Anwendung auf $SU(2) \times U(1)$

 $\underbrace{W^+, W^-, Z}_{\text{massiv}}, \underbrace{A}_{\text{masselos}} \text{ erfordert 3 longitudinale Polarisationszustände} \stackrel{}{=} 3 \text{ unphysical states} \\ \text{sikalische Skalarfelder. Daher minimale Möglichkeit: skalares Dublet:}$

 $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad \begin{array}{c} 4 \text{ reelle Felder} \\ 3 \text{ unphysikalische} + 1 \text{ physikalisches} \end{array}$

Darstellung zu $I = \frac{1}{2}$ und Y = +1.

$$Q = \frac{1}{2}\mathbb{1} + I_3 = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$
$$Q\Phi = \begin{pmatrix} \phi^+\\ 0 \end{pmatrix}, \qquad \phi^+ \text{ Ladung 1, } \phi^0 \text{ neutral}$$

 $U(1)_{em}$ -Symmetrie soll ungebrochen bleiben, da Photon masselos. Daher muss für das Vakuum gelten $(v \neq 0)$:

$$\Phi_0 = \begin{pmatrix} 0 \\ v \end{pmatrix}, \qquad Q\Phi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

und $e^{i\alpha Q}\Phi_0 = \Phi_0$ invariant.

$$SU(2) \times U(1)$$
 Symmetrie spontan gebrochen durch $\Phi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

eichinvariante Lagrange-Dichte für Φ -Feld:

$$\mathcal{L}_{\Phi} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi)$$
$$D_{\mu} = \partial_{\mu} - ig_2 \frac{\sigma_a}{2} W^a_{\mu} + ig_1 \frac{Y}{2} B_{\mu} \qquad \text{mit } Y = 1$$
$$V(\Phi) = -\mu^2 (\Phi^{\dagger}\Phi) + \frac{\lambda}{4} (\Phi^{\dagger}\Phi)^2, \qquad \lambda > 0, \mu^2 > 0$$

- hat Minimum bei $v = \frac{2\mu}{\sqrt{\lambda}} \neq 0$
- ist renormierbar (ϕ^4 -Wechselwirkung)
- minimale Möglichkeit (bekannt aus der Kernphysik als " σ -Modell")

ansonsten ist der Ansatz "ad-hoc".

$$\Phi = \begin{pmatrix} \phi_1 + i\phi_2\\ \frac{v+H}{\sqrt{2}} + i\chi \end{pmatrix} = \underbrace{\underbrace{U(\phi_1, \phi_2, \chi)}_{\in SU(2) \times U(1), \text{ Eichtransformation}}}_{\substack{\text{mit } \phi_1(x), \phi_2(x), \chi(x) \text{ als Parameter,}\\ \text{daher unphysikalisch}}} \begin{pmatrix} 0\\ \frac{v+H}{\sqrt{2}} \end{pmatrix}$$

 \Rightarrow durch ge
eignete Eichtransformation erreicht man die Form

$$\Phi = \begin{pmatrix} 0\\ \frac{v+H}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix}$$

Diese Eichung heißt unitäre Eichung.

H(x): physikalisches Feld, reell (=neutral). Jetzt weiter in der unitären Eichung. Auswertung des kinetischen Terms von \mathcal{L}_{Φ} für H = 0:

$$(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)\big|_{H=0} = \underbrace{(\frac{g_{2}}{2}v)^{2}}_{M_{W}^{2}}W_{\mu}^{+}W^{-\mu} + \underbrace{(\frac{g_{2}}{2}v)^{2}}_{W$$

$$+\underbrace{\frac{1}{2}(B_{\mu},W_{\mu}^{3})\frac{v^{2}}{2}\left(\begin{array}{c}g_{1}^{2}&g_{1}g_{2}\\g_{1}g_{2}&g_{2}^{2}\end{array}\right)\left(\begin{array}{c}B^{\mu}\\W^{3\mu}\end{array}\right)}_{=\frac{1}{2}(A_{\mu},Z_{\mu})\frac{v^{2}}{4}\left(\begin{array}{c}0&0\\0&g_{1}^{2}+g_{2}^{2}\end{array}\right)\left(\begin{array}{c}A^{\mu}\\Z^{\mu}\end{array}\right)}$$
$$=\frac{1}{2}\underbrace{(g_{1}^{2}+g_{2}^{2})\frac{v^{2}}{4}}_{=M_{Z}^{2}}(Z_{\mu}Z^{\mu})$$

$$\boxed{\frac{M_W^2}{M_Z^2} = \frac{g_2^2}{g_1 + g_2^2} = \frac{1}{1 + \tan^2 \theta_W} = \cos^2 \theta_W}$$

 θ_W durch W/Z-Massenverhältnis bestimmt.

$$\begin{split} \mathcal{L}_{W,B} + \mathcal{L}_{\Phi} &= \\ &= -\frac{1}{4} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) - \\ &- \frac{1}{4} (\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu})(\partial^{\mu}Z^{\nu} - \partial^{\nu}Z^{\mu}) + \frac{M_{Z}^{2}}{2}Z_{\mu}Z^{\mu} - \\ &- \frac{1}{2} (\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+})(\partial^{\mu}W^{-\nu} - \partial^{\nu}W^{-\mu}) + M_{W}^{2}W_{\mu}^{+}W^{-\mu} + \\ &+ (\text{WW-Terme}) \end{split}$$

ergibt die Propagatoren

$$\begin{array}{l} & i \frac{-g_{\mu\nu}}{h^2 + i\epsilon} & \text{wie (QED)} \\ \\ \bullet & \\ Z_{\mu} & i \frac{-g_{\mu\nu} + \frac{h_{\mu}h_{\nu}}{M_{Z}^{2}}}{h^2 - M_{Z}^2 + i\epsilon} \\ \\ \bullet & \\ W_{\mu}^{\pm} & i \frac{-g_{\mu\nu} + \frac{h_{\mu}h_{\nu}}{M_{W}^{2}}}{h^2 - M_{W}^2 + i\epsilon} \end{array}$$

aus $|D_{\mu}\Phi|^2$ folgt die H - W, Z-WW:

6.5 Fermionmassen und -Mischung

noch offen: wie kommen die Fermionmassen ins Spiel? $(m_f = 0$ wegen Eichinvarianz)

Strategie: Yukawa-Wechselwirkung

= WW zwischen Fermionen und Skalar (ursprünglich für Photon/Neutron mit Pion).

Skalar=Higgs, $\Phi = \begin{pmatrix} \phi^{\dagger} \\ \phi^{0} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+H \end{pmatrix}$ mit unitärer Eichung

6.5.1 Eine Generation

$$\mathcal{L}_{\text{Yukawa}} = g_e \left[(\bar{\nu}_L, \bar{e}_L) \Phi e_R + \bar{e}_R \Phi^{\dagger} \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right) \right]$$

 g_e : neue Kopplungskonstante, eichinvariant

$$\mathcal{L}_{\text{Yukawa}} = \frac{g_e}{\sqrt{2}} \left[\left(\bar{\nu}_L, \bar{e}_L \right) \begin{pmatrix} 0 \\ v+H \end{pmatrix} e_R + \bar{e}_R(0, v+H) \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] = \\ = \frac{g_e}{\sqrt{2}} (\underbrace{\bar{e}_L e_R + \bar{e}_R e_L}_{=\bar{e}e})(v+H) = \\ = \underbrace{\frac{g_e v}{\sqrt{2}}}_{m_e} \bar{e}e + \underbrace{\frac{g_e}{\sqrt{2}}}_{e} \bar{e}eH \\ H - \cdots \checkmark e^e_{v_1} \underbrace{\frac{g_e}{\sqrt{2}}}_{v_2}$$

liefert fehlenden Massenterm + zusätzliche H-Fermion-WW

$$m_e = \frac{g_e v}{\sqrt{2}} \qquad g_e = \frac{m_e}{v}\sqrt{2}$$

mit $M_W = \frac{1}{2}g_2 v, v = \frac{2M_W}{g_2}$:

$$g_e = \sqrt{2}m_e \cdot \frac{g_2}{2M_W} = g_2 \frac{m_e}{\sqrt{2}M_W} \ll g_2$$

- Für μ , τ völlig analog: $m_{\mu} = g_{\mu} \frac{v}{\sqrt{2}}, m_{\tau} = g_{\tau} \frac{v}{\sqrt{2}}$
- Für d-Quarks: $g_d \left[(\bar{u}_L, \bar{d}_L) \Phi + h.c. \right] \to m_d = \frac{g_d v}{\sqrt{2}}$
- Für u-Quarks: Φ^c statt Φ .

c-konjugiertes Feld:
$$\Phi^c = -i\sigma_2 \Phi^* = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \phi^- \\ \phi^{0*} \end{pmatrix} = \begin{pmatrix} -\phi^{0*} \\ \phi^- \end{pmatrix},$$

 $\phi^- = (\phi^\dagger)^\dagger$ in der unitären Eichung: $\phi^c = -\frac{1}{\sqrt{2}} \begin{pmatrix} v+H \\ 0 \end{pmatrix}$
 $-g_u \left[(\bar{u}_L, \bar{d}_L) \Phi^c u_R + h.c. \right] = \frac{g_u v}{\sqrt{2}} (\bar{u}u), m_u = \frac{g_u v}{\sqrt{2}}$

Mit den richtigen Vorzeichen $(-m_f \bar{\psi} \psi$ in $\mathcal{L})$:

$$\begin{aligned} \mathcal{L}_{\text{Yukawa}} &= + g_u \left[(\bar{u}_L, \bar{d}_L) \Phi^c u_R + h.c. \right] - \\ &- g_d \left[(\bar{u}_L, \bar{d}_L) \Phi d_R + h.c. \right] - \\ &- g_l \left[(\bar{\nu}_L, \bar{e}_L) \Phi e_R + h.c. \right] \end{aligned}$$

allgemein:

$$g_f = \sqrt{2} \frac{m_f}{v}$$

alle leichten Fermionen mit $m_f \ll M_W$ haben sehr kleine Yukawa-Kopplungen. Ausnahme: Top-Quark, $g_t = \sqrt{2} \frac{m_t}{v} = \frac{g_2}{\sqrt{2}} \frac{m_t}{M_W}$ kann direkt bestimmt werden am LHC bei der $t\bar{t}$ -Erzeugung

6.5.2 Mehrere Generationen

- **Leptonen:** Mit $\nu = 0$ keine neuen Phänomene, 2. und 3. Generation wie 1. Generation (Leptonzahl-Erhaltung)
- **Quarks:** Yukawa-WW zwischen verschiedenen Generationen möglich \Rightarrow neue Phänomene: Mischung und CP-Verletzung

WW-Terme mit Yukawa-Kopplungen g_{ij}^u und g_{ij}^d (i,j=1,...,3 bezeichnet Generationen), i. A. komplex.

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{i,j} g_{ij}^d (\bar{u}_L^i, \bar{d}_L^i) \Phi d_R^j + h.c. =$$

$$= -\sum_{i,j} \underbrace{\left(\frac{v}{\sqrt{2}}g_{ij}^{d}\right)}_{(m_{ij}^{d} \equiv M_{d}} \overline{d}_{L}^{i} d_{R}^{j} + h.c. =$$

$$= -\overline{D}_{L} M_{d} D_{R} + h.c.$$

$$D_{L} = \begin{pmatrix} d_{L}^{1} \\ d_{L}^{2} \\ d_{L}^{3} \end{pmatrix} = \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix}, D_{R} = \begin{pmatrix} d_{R}^{1} \\ d_{R}^{2} \\ d_{R}^{3} \end{pmatrix} = \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \end{pmatrix}$$
Entsprechend für u-Quarks, mit $\Phi^{c} = \frac{(-1)}{\sqrt{2}} \begin{pmatrix} v + H \\ 0 \end{pmatrix}$:
$$\mathcal{L}_{\text{Yukawa}} = \sum_{i,j} g_{ij}^{u} (\overline{u}_{L}^{i}, \overline{d}_{L}^{i}) \Phi^{c} u_{R}^{j} + h.c.$$

ergibt Massenterm $-\bar{U}_L M_u U_R + h.c., M_u = \left(\frac{v}{\sqrt{2}}g_{ij}^u\right).$

$$U_L = \begin{pmatrix} u_L^1 \\ u_L^2 \\ u_L^3 \end{pmatrix} = \begin{pmatrix} u_L \\ c_L \\ t_L \end{pmatrix} \qquad U_R = \begin{pmatrix} u_R^1 \\ u_R^2 \\ u_R^3 \end{pmatrix} = \begin{pmatrix} u_R \\ c_R \\ t_R \end{pmatrix}$$

also: $\mathcal{L}_{\text{Massen}}^{\text{Quarks}} = -\bar{D}_L M_d D_R - \bar{U}_L M_u U_R$ ohne Details: M_u , M_d können diagonalisiert werden durch unitäre Matrizen.

$$\mathcal{L}_{Massen}^{Quarks} = -\bar{D}'_{L} \underbrace{\begin{pmatrix} V_{L}^{d} \end{pmatrix}^{\dagger} M_{d} V_{R}^{d}}_{=M'_{d} = \begin{pmatrix} m_{d} \\ m_{s} \\ m_{b} \end{pmatrix}} D'_{R} - \bar{U}'_{L} \underbrace{\begin{pmatrix} V_{L}^{u} \end{pmatrix}^{\dagger} M_{d} V_{R}^{d}}_{M'_{u} = \begin{pmatrix} m_{u} \\ m_{u} \\ m_{c} \\ m_{t} \end{pmatrix}} D'_{R} - \bar{U}'_{L} \underbrace{\begin{pmatrix} V_{L}^{u} \end{pmatrix}^{\dagger} M_{u} V_{R}^{u}}_{M'_{u} = \begin{pmatrix} m_{u} \\ m_{u} \\ m_{t} \\ m_{t} \end{pmatrix}} D'_{R} - \bar{U}'_{L} \underbrace{\begin{pmatrix} V_{L}^{u} \end{pmatrix}^{\dagger} M_{u} V_{R}^{u}}_{M'_{u} = \begin{pmatrix} m_{u} \\ m_{u} \\ m_{t} \\ m_{t} \end{pmatrix}} D'_{R} - \bar{U}'_{L} \underbrace{\begin{pmatrix} V_{L}^{u} \end{pmatrix}^{\dagger} M_{u} V_{R}^{u}}_{M'_{u} = \begin{pmatrix} m_{u} \\ m_{u} \\ m_{t} \\ m_{t} \end{pmatrix}} D'_{R} - \bar{U}'_{L} \underbrace{\begin{pmatrix} V_{L}^{u} \end{pmatrix}^{\dagger} M_{u} V_{R}^{u}}_{M'_{u} = \begin{pmatrix} m_{u} \\ m_{u} \\ m_{t} \\ m_{t}$$

 $D' = \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}, U' = \begin{pmatrix} u' \\ c' \\ t' \end{pmatrix}$ Masseneigenzustände.

Übergang von U,D-Basis zu U',D'-Basis, alles durch Masseneigenzustände ausdrücken: was ändert sich?

(i) Propagatoren für $u, d, \dots \rightarrow u', d', \dots$ aus quadratischen Termen in \mathcal{L} :

$$\begin{split} \bar{u}\partial u + \dots \\ &= \sum_{i} \bar{u}_{L}^{i} \partial u_{L}^{i} + \bar{u}_{R}^{i} \partial u_{R}^{i} + \bar{d}_{L}^{i} \partial d_{L}^{i} + \bar{d}_{R}^{i} \partial d_{R}^{i} \\ &\equiv \bar{U}_{L} \partial U_{L} + \bar{U}_{R} \partial U_{R} + \bar{D}_{L} \partial D_{L} + \bar{D}_{R} \partial D_{R} \\ &= \bar{U}_{L}^{\prime} \partial U_{L}^{\prime} + \bar{U}_{R}^{\prime} \partial U_{R}^{\prime} + \bar{D}_{L}^{\prime} \partial D_{L}^{\prime} + \bar{D}_{R}^{\prime} \partial D_{R}^{\prime} \end{split}$$

Da $(V_L^u)^{\dagger}V_L^u = 1, (V_L^d)^{\dagger}V_L^d = 1$ we gen Unitarität.

(ii) ebenso alle NC-WW-Terme: $\bar{U}_L \gamma^{\mu} U_L$, $\bar{U}_R \gamma^{\mu} U_R$, $\bar{D}_L \gamma^{\mu} D_L$, $\bar{D}_R \gamma^{\mu} D_R = \bar{U}'_L \gamma^{\mu} U'_L$,... das bedeutet: NC verursachen keinen Generationswechsel der Art $u \leftrightarrow c, c \leftrightarrow t$

```
keine FCNC \equiv Flavour Changing Neutral Currents
```

6.5. FERMIONMASSEN UND -MISCHUNG

(jedoch in höherer Ordnung, Schleifen \Rightarrow unterdrückt)

(iii) WW-Terme mit CC:

w w-terme mit CC:

$$\bar{U}_L \gamma^{\mu} D_L, \ \bar{D}_L \gamma^{\mu} U_L \to \bar{U}'_L \underbrace{(V_L^u)^{\dagger} V_L^d}_{=:V_{CKM}} \gamma^{\mu} D'_L, \ \bar{D}'_L \underbrace{(V_L^d)^{\dagger} V_L^u}_{V_{CKM}^+} \gamma^{\mu} U'_L \\
= (\bar{u}'_L, \bar{c}'_L, \bar{t}'_L) \gamma^{\mu} V_{CKM} \begin{pmatrix} d'_L \\ s'_L \\ b'_L \end{pmatrix} \text{ mit } (V_{CKM}: \text{ unitäre } 3 \times 3\text{-Matrix}) \\
= (u', c', t') \gamma^{\mu} \frac{1 - \gamma_5}{2} V_{CKM} \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}$$

Von jetzt ab: ausschließlich die Massen-Eigenzustände verwenden, wieder ohne ' bezeichnet, d.h. u, d,

 $V_{CKM} \neq 1$ ist die einzige physikalisch messbare Konsequenz der Quarkmischung in der Yukawa-WW.

Komplexe 3×3 -Matrix: $9 \cdot 2 = 18$ reelle Parameter.

Unitarität: 9 Bedingungen \Rightarrow 9 reelle Parameter = 3 Winkel + 6 Phasen.

Von den 6 Phasen können 5 mit 5 der 6 Quarkfelder absorbiert werden (durch Redefinition $\psi \rightarrow e^{i\phi}\psi$), nur 1 Phase bleibt physikalisch messbar, daher freie Parameter von V_{CKM} :

3 Winkel $\theta_{12}, \theta_{13}, \theta_{23}$

1 Phase δ bzw. $e^{i\delta}$ ($\delta \neq 0 \Rightarrow$ CP-Verletzung). Allgemein gilt für unitäre $N \times N$ -Matrix:

$$\frac{N(N-1)}{2}$$
 Winkel, $\frac{N(N+1)}{2}$ Phasen

2N-1Phasen sind unbeobachtbar (Absorption) bleiben

$$\frac{N(N+1)}{2} - (2N-1) = \frac{N^2 + N - 4N + 2}{2} = \frac{N^2 - 3N + 1}{2}$$

Bei 2×2 -Matrix:

$$\frac{N(N-1)}{2} = \frac{2 \cdot 1}{2}$$
 Winkel

$$\frac{N(N+1)}{2} - (2N-1) = \frac{2 \cdot 3}{2} - (2 \cdot 2 - 1) = 3 - 3 = 0$$
 Phasen

Daher bei nur 2 Quark-Generationen:

Mischung = Drehung (**Cabibbo-Winkel**) $\delta = 0$, keine CP-Verletzung. Historisch: CP-Verletzung im K^0 -System bekannt vor 3. Quark-Generation.

Leptonen: mit Erweiterung des SM um massive ν ist ebenfalls Generationenmischung möglich.

 ν -Masse durch Yukawa-WW erfordert ein ν_R :

$$g^{\nu}(\bar{\nu}_L, \bar{e}_L) \begin{pmatrix} \frac{v+H}{2} \\ 0 \end{pmatrix} \nu_R + h.c. = \bar{\nu}_L \underbrace{\frac{v}{\sqrt{2}} g^{\nu}}_{m_{\nu}} \nu_R + h.c.$$

mit m_{ν} : Dirac-Masse $(m_{\nu} = m_D)$.

Init m_{ν} . Dirac-Masse $(m_{\nu} - m_D)$. ν_R ist SU(2)-Singlett, I = 0. Außerdem: $Q = 0 = I_3 + \frac{Y}{2} \Rightarrow Y = 0 \Rightarrow$ keine Eich-WW für ν_R , nur winzige Yukawa-WW, da $m_{\nu} \ll m_e$. Jedoch weiterer Masseterm möglich, mit $\nu_R^c = C \bar{\nu}_R^T$, ladungskonjugiertes ν_R -Feld $(C = -i\gamma^0 \gamma^2)$.

 $\mathcal{L}_M = \bar{\nu}_R^c M \nu_R, \ (M \gg m_f),$ Majorana-Term, M: Majorana-Masse

Kapitel 7

Neutrale Ströme

Endeckung 1973 (Hasert et. al.); ν_{μ} -WW:

 $R(Z^0)/R(W^{\pm}) \simeq 0,25$ $\nu_{\mu}N \rightarrow \nu_{\mu} + Hadronen$ ist ähnlich zu $e^-N \rightarrow e^- + Hadronen$ (hier: elektromagnetische WW mit γ -Austausch) Elektroschwache Theorie: Verknüpfung der W^{\pm}, Z^0 -Kopplung g mit der γ -Kopplung an geladene Leptonen und Quarks.

In etwa.
$$e \simeq g$$
. Da $G = \lim_{q^2 \to 0} \frac{g^2}{q^2 + M_W^2} = \frac{g^2}{M_W^2} \Rightarrow$
$$\boxed{M_W \simeq \frac{e}{\sqrt{G}} \simeq 1 \cdot 10^2 \text{ GeV}}$$

und ebenso ${\cal M}_Z$

7.1 Nachweis W^{\pm}, Z^0

 $p\bar{p}\text{-}\mathrm{Collider}$ mit $E_{p,\bar{p}}>10^2~\mathrm{GeV}$ W-Erzeugung:

 $u + \bar{d} \to W^+$

$$\bar{u} + d \to W^-$$

Zerfall:

$$\begin{array}{cccc} W^+ & \to & e^+ + \nu_e \\ & \mu^+ + \nu_\mu \\ & \tau^+ + \nu_\tau \\ & u + \bar{d} \\ & s + \bar{d} \\ & \vdots \end{array} \right\} \text{Hadronen}$$

 Z^0 -Erzeugung:

$$\begin{split} u + \bar{u} &\to Z^0 \\ d + \bar{d} &\to Z^0 \end{split}$$

 Z^0 -Zerfall:

$$Z^{0} \rightarrow e^{+}e^{-}$$

$$\mu^{+}\mu^{-}$$

$$\tau^{+}\tau^{-}$$
Hadronen (aus $q\bar{q}$)

Zerfall:

$$\begin{array}{cccc} & \Longrightarrow & & & \\ & \swarrow & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

⇒ $W^+ \rightarrow e^+ \nu_e$ erfolgt mit einer Winkelverteilung ~ $(1 + \cos \theta)^2$. Exp. Resultate: $M_{W^{\pm}} = (80, 33 \pm 0, 15) \frac{GeV}{c^2}; M_{Z^0} = (91, 187 \pm 0, 007) \frac{GeV}{c^2}.$ Exp. Signatur: Rein leptonische Signale (z. B. e^+, ν_e). Rate gegenüber $p\bar{p} \rightarrow$ Hadronen (durch starke WW) um ~ 10^9 unterdrückt!

 W^{\pm} : Ein geladener Lepton mit großem "Transversalimpuls"

die W-Bosonen sind polarisiert (P-Verletzung!)

$$\begin{array}{c} \Longrightarrow \\ & \swarrow \\ & \nu_e \end{array} \xrightarrow{} \\ & \psi_e \end{array} \xrightarrow{} \\ & e^+ \end{array} \xrightarrow{} \\ & e^+ \end{array} \xrightarrow{} \\ & & \psi_e \end{array} , \text{erlaubt"} (\theta = 0^\circ)$$

Kinematik $\rightarrow m_W = 80, 2$ GeV. Nachweis Z^0 in e^+e^- -Collidern:

$$e^+e^- \to Z^0 \to f\bar{f}$$

f = (Fermi-)Elementarteilchen. Zerfallsbreite $\Gamma_Z=\frac{1}{\tau_Z}=\sum_f \Gamma_f$

i) Hadronen:

$$\Gamma_h = \Gamma_n + \Gamma_d + \Gamma_s + \Gamma_c + \Gamma_b$$

$$(m_\tau \simeq 180 \text{ GeV} > \frac{m_Z}{2})$$

ii) geladene Leptonen:

$$\Gamma_l = \Gamma_e + \Gamma_\mu + \Gamma_t \simeq 3 \cdot \Gamma_e$$

 $(m_t \ll \frac{m_z}{2})$

iii) Neutrinos

$$\Gamma_{invis} = N_{\nu} \cdot \Gamma_{\nu}$$

$$N_{\nu} = \text{Anzahl der Neutrinofamilien} \Rightarrow N_{\nu} = \underbrace{\frac{1}{\Gamma_{\nu}}}_{Theorie} \underbrace{\frac{\Gamma_z - \Gamma_h - 3\Gamma_e}{Experiment}}_{Experiment} \Rightarrow$$

$$N_{\nu} = 2.001 \pm 0.016 \text{ m} = 01.2 \text{ CoV}/c^2 \text{ Direktor Nechwois von Neu}$$

ΔŢ Г

 $N_{\nu}=2,991\pm0,016~m_z=91,2~{\rm GeV}/c^2.$ Direkter Nachweis von Neutrinos: über geladene Strom-WW:

$$\begin{split} \nu_e + {}^{71}\text{Ga} &\to e^- + {}^{71}\text{Ge} \quad \text{oder} \\ \bar{\nu} + p \to \to n + e^+ \\ \nu_\mu +_Z \text{A} &\to \text{Hadronen} + \mu^- \\ \bar{\nu}_\mu +_Z \text{A} &\to \text{Hadronen} + \mu^+ \\ \nu_\tau +_Z \text{A} &\to \underbrace{\tau^-}_{\to \nu_\tau} + \text{Hadronen} \\ &\to \nu_\tau + e^- + \bar{\nu}_e \sim 18\% \\ \nu_\tau + \mu^- + \bar{\nu}_\mu \sim 18\% \\ \nu_\tau + \text{Hadronen} \sim 64\% \end{split}$$

 \Rightarrow 3 Familien
bild der elementaren Fermiteilchen

Quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

Leptonen: $\begin{pmatrix} e \\ \nu_e \end{pmatrix}_l \begin{pmatrix} \mu \\ \nu_\mu \end{pmatrix}_l \begin{pmatrix} \tau \\ \nu_\tau \end{pmatrix}_l$ + Antiteilchen
 $e_r \qquad \mu_r \qquad \tau_r$

Zerfall neutraler K^0 -Mesonen 7.2

Erzeugung K^0 :

 $p \rightarrow \Lambda^0 +$ K^0 + π s: 0 0 -1 +1

Erzeugung \bar{K}^0 :

oder:

aber nicht:

Strangeness ist in der starken WW eine Erhaltungsgröße. Schwellenenergie für $K^0: 0,9 \text{ GeV}$, für $\overline{K}^0: 1,5 \text{ GeV} \Rightarrow \text{Erzeugung eines reinen } K^0$ -Strahls möglich. Beobachtung K^0 -Zerfall:

$$\begin{array}{ccc} K^0 \to 2\pi & \\ K^0 \to 3\pi & \\ \end{array} \quad \text{und} \quad \begin{array}{c} \bar{K}^0 \to 2\pi \\ \bar{K}^0 \to 3\pi \end{array}$$

 $\Rightarrow K^0 - \bar{K}^0$ Oszillationen im Quarkbild (Bsp.):

Übergang mit $\Delta s = 2$ und 2. Ordnung in der schwachen WW.

$$\Psi_K(t=0) = |K^0\rangle$$
 aber

$$\Psi_K(t) = \alpha(t) \left| K^0 \right\rangle + \beta(t) \left| \bar{K}^0 \right\rangle$$

Teilchen, die schwach zerfallen, sind Eigenzustände von CP (Sharpness ist verletzt). \bar{K}^0

$$CP\left|K^{0}\right\rangle = \eta\left|I\right\rangle$$

und

$$CP | \bar{K}^0 \rangle = \eta' | K^0 \rangle$$

Offensichtlich sind $|K^0\rangle$ und $|\bar{K}^0\rangle$ keine CP-Eigenzustände. Mit $\eta = \eta' = 1$ (per Definition) bilden wir folgende CP-Eigenzustände:

$$|K_1\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle + |\bar{K}^0\rangle)$$
$$|K_2\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle - |\bar{K}^0\rangle$$

mit $CP |K_1\rangle = + |K_1\rangle$ und $CP |K_2\rangle = - |K_2\rangle$: K^0 und \bar{K}^0 werden durch Produktionsprozesse (S-Erhaltung) unterschieden. K_1 und K_2 sind die relevanten Zustände im (schwachen) Zerfall.

Zerfallsmoden:

a) $\pi^0 \pi^0$ und $\pi^+ \pi^-$

$$CP |\pi^0 \pi^0 \rangle = + |\pi^0 \pi^0 \rangle$$
$$CP |\pi^+ \pi^- \rangle = + |\pi^+ \pi^- \rangle$$

CP=+1

b) $\pi^{+}\pi^{-}\pi^{0}$

$$\left. \begin{array}{c} CP(\pi^+\pi^-) = +1 \\ C(\pi^0) = +1 \\ P(\pi^0) = -1 \end{array} \right\} CP = -1$$

c) $\pi^0 \pi^0 \pi^0$

$$CP(\pi^0\pi^0\pi^0) = -1$$

⇒ Zerfälle in 2 Pionen: CP = +1; in 3 Pionen: CP = -1. 2-Körperzerfall erfolgt schneller als der in 3 Pionen (wegen Phasenraum) $\tau_1(K_1 \to 2\pi) = 9 \cdot 10^{-10}$ sec $\tau_2(K_2 \to 3\pi) = 5 \cdot 10^{-8}$ sec. Amplitude des $|K_1\rangle$ -Zustands

$$a_1(t) = a_1(0) \cdot e^{-(iE_1/\hbar)t} e^{-\Gamma_1 t/2\hbar}$$

 mit

- E_1 : Gesamtenergie (ebene Welle-Ansatz)
- $E_1/\hbar = \omega_1$

• $\Gamma_1 = \frac{\hbar}{\tau_1}$: Zustandsbreite

so dass gilt:

$$J_{K_1}(t) = |a_1(t)|^2 = a_1 a_1^* = a_1(0) a_1^*(0) e^{-\Gamma_1 t/\hbar} = J_{K_1}(0) e^{-t/\tau_1}$$
(radioaktives Zerfallsgesetz)

Sei $\hbar = c = 1 \Rightarrow E_1 = m_1$ (Ruhesystem)

$$a_1(t) = a_1(0) \exp\left(-(\Gamma_1/2 + im_1)t\right)$$

und für K_2 :

 $a_2(t) = a_2(0) \exp\left(-(\Gamma_2/2 + im_2)t\right)$ Zur Zeit t_0 : reiner K^0 -Strahl $\Rightarrow a_1(0) = a_2(0) = \frac{1}{\sqrt{2}}$ weil $\frac{1}{\sqrt{2}} |K_1\rangle + \frac{1}{\sqrt{2}} |K_2\rangle = |K_0\rangle$. Nach einer Zeit t:

$$J(K^{0}) = \frac{a_{1}(t) + a_{2}(t)}{\sqrt{2}} \cdot \frac{a_{1}^{*}(t) + a_{2}^{*}(t)}{\sqrt{2}}$$
$$J(K^{0}) = \frac{1}{4} \left[e^{-\Gamma_{1}t} + e^{-\Gamma_{2}t} + 2e^{-[(\Gamma_{1}+\Gamma_{2})/2]t \cdot \cos(\Delta mt)} \right]$$

mit $\Delta m = m_1 - m_2$.

 K_1 und K_2 haben unterschiedliche Massen. Grund: Unterschiedliche schwache Kopplungen. $\rightarrow K^0 - \bar{K}^0$ Oszillationen ($\cos(\Delta mt)$).

Exp. Ergebnisse: $\Delta m = 3,52 \cdot 10^{-6}$ eV, so dass $\frac{\Delta m}{m} = 7 \cdot 10^{-15}$. K^0 und \bar{K}^0 haben keine festen Masseneigenwerte. Sie sind Mischungen der Masseneigenzustände K_1 und K_2 .

K_1 -Regeneration

$$|K_1\rangle = \frac{1}{\sqrt{2}} (|K^0\rangle + |\bar{K}^0\rangle) \qquad (\tau_1 = 9 \cdot 10^{-11} \ s)$$
$$|K_2\rangle = \frac{1}{\sqrt{2}} (|K^0\rangle - |\bar{K}^0\rangle) \qquad (\tau_2 = 5 \cdot 10^{-8} \ s)$$

Nach einer Laufstrecke $x \simeq c \cdot t \gg c\tau_1$ ist im wesentlichen nur noch $|K_2\rangle$ vorhanden.

$$K^0$$
-Quelle K_1 K_2 K_1 K_2

Beim Austritt aus dem "Regenerator" (Materiestück): K^0 -Amplitude: f \bar{K}^0 -Amplitude \bar{f} mit f < 1, $\bar{f} < 1$ und $f \neq \bar{f}$ (K^0 und \bar{K}^0 wechselwirken unterschiedlich) \Rightarrow

$$\begin{split} \Psi &= \frac{1}{\sqrt{2}} (f | K^0 \rangle + \bar{f} | \bar{K}^0 \rangle = \\ &= \frac{f - \bar{f}}{2\sqrt{2}} \underbrace{(|K^0 \rangle + | \bar{K}^0 \rangle)}_{\sqrt{2} \cdot | K_1 \rangle} + \frac{f + \bar{f}}{2\sqrt{2}} \underbrace{(|K^0 \rangle - | \bar{K}^0 \rangle)}_{\sqrt{2} | K_2 \rangle} = \\ &= \frac{1}{2} (f - \bar{f}) | K_1 \rangle + \frac{1}{2} (f + \bar{f}) | K_2 \rangle \end{split}$$

 \Rightarrow wegen $f \neq \bar{f}$: Wiederholte Beobachtung kurzlebiger K_1 -Zustände!

CP-Verletzung im K^0 -Zerfall 7.3

Christensen, Cronin, Fitch, Turley 1964 Beobachtung $K_2 \rightarrow 2\pi B_{K_2}(\frac{2\pi}{3\pi} \simeq 10^{-3})$. Ersetzung:

$$K_1 \to K_s$$
 ("short")

$$K_2 \to K_l$$
 ("long")

Maß der CP-Verletzung (Def.)

$$|\eta_{\pm}| = \frac{\text{Ampl.}(K_l \to \pi^+ \pi^-)}{\text{Ampl.}(K_s \to \pi^+ \pi^-)} = (2, 27 \pm 0, 02) \cdot 10^{-3}$$

 K_s : Dominanter CP = +1 Anteil, kleine CP = -1 Beimischung

 K_l : Dominanter CP = -1 Anteil, kleine CP = +1 Beimischung

Die Größe der Beimischung ist $|\eta_{\pm}|$ Mit dieser Modifizierung wird die Intensität der 2π -Zerfälle:

$$I_{2\pi} \sim e^{-\Gamma_s t} + |\eta_{\pm}|^2 e^{-\Gamma_l t} \qquad \text{(Beiträge von } K_s \text{ und } K_l) \\ + 2|\eta_{\pm}| \exp\left\{-t(\Gamma_s + \Gamma_l)/2\right\} \cos(\Delta m \cdot t + \phi_{\pm}) \qquad \text{(Interferentiation)}$$

Interferenz ("Schwebung") zwischen K_s und K_l , da beide Zustände über 2π zerfallen können. Exp. Wert: $\phi_{\pm} = 44,6^{\circ} \pm 1,2^{\circ}$

7.4 Neutrinooszillationen

Theoretische Fragestellung: $m_{\nu} = 0$? Exp. Hinweise: "Solares ν -Problem", Anomalien "atmosphärischer" ν 's. Maki, Pontecorvo (1968): $\nu_{e,\mu,\tau}$ sind Linearkombinationen von Masseneigenzuständen $\nu_{1,2,3}$ (\rightarrow Mischungsmatrix). Betrachten wir 2 ν -Flavours (z. B. $\nu_{e,\mu}$)

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\end{array}\right) = \left(\begin{array}{c}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$$

 $\Rightarrow \nu_e = \nu_1 \cos \theta + \nu_2 \sin \theta$

 $\nu_{e,\mu}$: Eigenzustände der schwachen WW

 $\nu_{1,2}$: Masseneigenzustände

Propagation im Raum (=Vakuum) wird durch ν_1 und ν_2 bestimmt.

 \rightarrow_{ν_1}

$$\nu_1(t) = \nu_1(0)e^{-iE_1t} \qquad (\hbar = c = 1)$$

 $\nu_2(t) = \nu_2(0)e^{-iE_2t}$

mit $|\nu_i(t)|^2 = const$, (i = 1, 2). Wie ist $|\nu_e(t)|^2$?

Sei bei t = 0 $\nu = \nu_e$ (z. B. durch die Reaktion $pp \to^2 H + e^+ + \nu_e$) $\Rightarrow \nu_e(t) = \nu_1(t) \cos \theta + \nu_2(t) \sin \theta$ mit $\nu_1(0) = \nu_e \cos \theta$ und $\nu_2(0) = \nu_e \sin \theta$, so dass $\nu_e(0) = \nu_e(\cos^2 \theta + \sin^2 \theta) = \nu_e$

$$\Rightarrow \nu_e(t) = \nu_e \left(\cos^2 \theta \cdot e^{-iE_1 t} + \sin^2 \theta \cdot e^{-iE_2 t} \right)$$

Nun ist $E_i = \sqrt{p^2 + m_i^2}$ und für $m_i \ll p$ ist $E_i \simeq p + \frac{m_i^2}{2p}$ Die Wahrscheinlichkeit, das Neutrino zur Zeit t im Zustand ν_e zu detektieren, ist:

$$P_{ee} = \left| \frac{\nu_e(t)}{\nu_e(0)} \right|^2 = \cos^4 \theta + \sin^4 \theta + \underbrace{\sin^2 \theta \cos^2 \theta \left\{ e^{i(E_2 - E_1)t + e^{-i(E_2 - E_1)t}} \right\}}_{\text{L} \leftarrow 0}$$

Interferenzterm, der für $E_2 \neq E_1$ bzw. $m_2^2 \neq m_1^2$ zu periodischen Oszillationen führt.

$$P_{ee} = 1 - \sin^2 2\theta \sin^2 \left[\frac{\Delta m^2 \cdot t}{4E}\right]$$

mit $\Delta m^2 := m_2^2 - m_1^2$ und E = p (ν -Energie).

$$P_{e\mu} = 1 - P_{ee} \qquad \text{(Wahrscheinlichkeit für Oszillation)}$$

$$\text{Allgemein:} \begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & \dots & \dots \\ \vdots & c & s \\ \vdots & -s_{13} & c \end{pmatrix} \begin{pmatrix} c & \vdots & s \\ \dots & 1 & \dots \\ -s & \vdots & c \end{pmatrix} \begin{pmatrix} c & s_{12} & \vdots \\ -s & c & \vdots \\ \dots & \dots & 1 \end{pmatrix}$$

$$\theta_{23} \simeq 45^{\circ} \qquad \qquad \theta_{12} \simeq 32^{\circ}$$

$$\text{- Atmosphäre} \qquad \text{- Solare } \nu\text{- und}$$

$$\text{Reaktor } \nu\text{-Exp.}$$

 $(c=\cos\theta_{ij};\,s=\sin\theta_{ij}).$
 $\theta_{13}?$ Obergrenze, $\theta_{13}\lesssim 12\,^{\circ}$

KAPITEL 7. NEUTRALE STRÖME

112

Kapitel 8

Status des Standardmodells, Perspektiven

8.1 Vorhersagen und Tests

8.1.1 Niederenergie-Limes

Betrachte CC-Reaktionen zwischen leichten Fermionen $(m_f \ll M_W)$ durch W^\pm -Austausch.

Matrixelement (bis auf Faktoren i):

$$M_{cc} = \left(\frac{g_2}{\sqrt{2}}\right)^2 < J_L^{\mu} > \frac{-g_{\mu\nu+\frac{Q_{\mu}Q_{\nu}}{M_W^2}}}{Q^2 - M_W^2} < J_L^{\nu} >$$

wobe
i $|Q^2| \ll M_W^2, \, \frac{Q_\mu Q_\nu}{M_W^2} \to \mathcal{O}(\frac{m_f^2}{M_W^2})$ vernachlässigbar für kleien Fermionen. Daher:

$$\begin{split} M_{cc} \simeq \underbrace{\frac{g_2^2}{2M_W^2}}_{\text{effekt. Koppl.}} & < J_L^{\mu} > < J_{\mu,L} > \\ & = \frac{4G_F}{\sqrt{2}} \\ & \text{effekt. Koppl.} \\ & \text{für } |Q^2| \ll M_W^2 \end{split}$$

Wichtige Relation:

$$\boxed{\frac{g_2^2}{8M_W^2} = \frac{G_F}{\sqrt{2}}}$$

Mit $M_W^2=\frac{1}{2}g_2^2v^2$ (siehe Kap. 6.4) erhält man: $\frac{G_F}{\sqrt{2}}=\frac{1}{2v^2}$ und damit

$$v = (\sqrt{2}G_F)^{-1/2} = 246 \text{ GeV}$$
 Fermi-Skala

Weitere Beziehung: $g_2 = \frac{e}{\sin \theta_W}, \cos \theta_W = \frac{M_W}{M_Z}$

$$\boxed{\frac{G_2}{\sqrt{2}} = \frac{e^2}{8M_W^2 \sin^2 \theta_W} = \frac{e^2}{8M_W^2 (1 - \frac{M_W^2}{M_Z^2})}}$$
(1)

Beziehung zwischen Niederenergiegrößen $G_{F,\alpha}$ und M_W, M_Z

historisch:

 $G_F~(\mu\text{-Lebensdauer})$ und $\sin^2\theta_W~(\nu\text{-Streuung})\to M_W,M_Z$ Vorhersage. Entdeckung 1983, CERN

Exp. Daten:

ergibt mit (1):

$$M_W^2 (1 - \frac{M_W^2}{M_Z^2}) = \frac{\pi \alpha}{\sqrt{2}G_F} = (37, 2805 \text{ GeV})^2$$

nicht erfüllt, wenn ${\cal M}^{exp}_{W\!,Z}$ eingesetzt werden, signifikante Abweichung

Erklärung:

höhere Ordnungen, Schleifenbeiträge \rightarrow Präzisionstests der elektroschwachen Theorie (in Analogie zur QED)

- (i) $\alpha \to \alpha(M_Z) = \frac{1}{129}$ laufende Kopplung genügt nicht
- (ii) alle Loop-Beiträge des SM, u. a.

Berechnung liefert:

$$\frac{\pi\alpha}{\sqrt{2}G_F} = M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) \cdot \left(1 - \Delta r\right)$$

Abbildung 8.1: Einschränkungen an die Higgsmasse ${\cal M}_H$

 $\Delta r = \Delta r(m_t, M_H)$: Schleifenkorrektur, ~ 0,03

Durch Vergleich mit den Daten \Rightarrow Einschränkung an die Higgsmasse M_H , niedrige Were bevorzugt (nahe 114 GeV, Ausschlussgrenze durch direkte Suche)

8.1.2 Z-Boson-Observable

benötigt Breite $\Gamma_Z \Leftrightarrow$ endliche Lebensdauer des $Z,\,\tau_Z\,\cdot\,\Gamma_Z(=\hbar)=1$

$$\frac{1}{s-M_Z^2+i\epsilon} \rightarrow \frac{1}{s-M_Z^2+iM_Z\Gamma_Z} \qquad {\rm Breit-Wigner-Form, \, Resonanz}$$

$$|M_Z|^2 \sim \frac{1}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Breite
$$\Gamma_Z = \sum_f \underbrace{\Gamma(z \to f\bar{f})}_{\equiv \Gamma_f \text{ partielle Breite}}, f \neq t$$

 $\Gamma_f = \frac{1}{64\pi^2 M_Z} \sqrt{1 - \frac{4m_f^2}{M_Z^2} |M_Z|^2} \simeq \frac{1}{64\pi^2 M_Z} \overline{|M|^2} \quad \text{für } m_f \ll M_Z$
 f
 $M = \frac{g_2}{2c_W} \epsilon^{\mu}_{(\lambda)} \cdot \bar{u}\gamma_{\mu}(v_f - a_f\gamma_5)v$
 $\epsilon^{\mu}_{(\lambda)}$: Polarisationsvektor des Z
 $(\lambda = 1, 2, 3)$

über die 3 Polarisationen mitteln mit Polarisationssumme:

$$\frac{1}{3}\sum_{\lambda=1}^{3}\epsilon^{\mu}_{(\lambda)}\epsilon^{\nu}_{(\lambda)} = \frac{1}{3}(-g^{\mu\nu} + \frac{k^{\mu}k^{\nu}}{M_{Z}^{2}})$$

ergibt (kurze Rechnung)

$$\Gamma(z \to f\bar{f}) = \Gamma_0(v_f^2 + a_f^2) \cdot N_c^f$$

$$N_c^f = \begin{array}{c} 1 & \text{für } f = l \\ 3 & \text{für } f = q \end{array}$$

$$\Gamma_0 = \frac{M_Z}{48\pi} \left(\frac{g_2}{2c_W}\right)^2 = \frac{\sqrt{2}G_F M_Z^3}{12\pi}$$

$$\frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8M_W^2} = \frac{g_2^2}{8c_W^2 M_Z^2}$$

(mit Relation 1): $\frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8M_W^2} = \frac{g_2^2}{8c_W^2 M_Z^2}$

$$\Gamma_{Z} = \underbrace{\sum_{l=e,\mu,\tau} \Gamma(z \to l^{+}l^{-})}_{\Gamma_{\rm lept.}} + \underbrace{\sum_{q \neq t} \Gamma(z \to q\bar{q})}_{\Gamma_{\rm hadr.}} + \underbrace{\sum_{\nu} \Gamma(z \to \nu\bar{\nu})}_{\text{unsichtbare Breite}}$$

 $\Gamma_Z,\,\Gamma_{\rm lept.}$ und $\Gamma_{\rm hadr.}$ sind direkt messbar. Aus der Differenz: Zahl der Neutrinos: $N_\nu=3$

Vorhersagen:

- $\Gamma_Z, \Gamma_{\text{lept}}, \Gamma_{\text{hadr}}, \sigma(e^+e^- \to f\bar{f})$
- Asymmetrien: $\frac{d\sigma}{d\Omega}(e^+e^- \to f\bar{f}) = A(1 + \cos^2\theta) + \underbrace{B\cos\theta}_{\text{antisymm. in }\theta}$

ergibt Vorwärts-Rückwärtsasymmetrie, für $s=M_Z^2 :$

$$\begin{cases} A_{FB}^{(f)} = \frac{3}{4} A_l A_f \\ A_f = \frac{2v_f a_f}{v_f^2 + a_f^2} \\ A_e \text{ durch } f \to e \end{cases} \right\} \Rightarrow \sin^2 \theta_W$$

Abbildung 8.2: Zahl der Neutrinos aus Zerfallsbreit
e Γ_Z

Rechts-Links-Asymmetrie:

$$A_{LR} = \frac{\sigma(e_L^-) - \sigma(e_R^-)}{\sigma(e_L^-) + \sigma(e_R^-)} = A_e$$

gemessen am SLAC Linear Collider, Stanford (SLD-Experiment)

Daten (Beispiele):

Mittelwerte von LEP und SLC:

$$\Gamma_Z = 2,4952 \pm 0,0023 \text{ GeV}$$

$$\sin^2 \theta_W = 0,23153 \pm 0,00016$$

auch hier: Präzisionstests, höhere Ordnungen erforderlich, z. B. $\Gamma_Z^{theo} = \Gamma_Z^{theo}(m_t, M_H)$, $\sin^2 \theta_W^{theo} = \sin^2 \theta_W^{theo}(m_t, M_H)$) \rightarrow Sensitivität auf M_H (alle Z-Observablen mit 1- und 2-Schleifenbeiträgen berechnet, teilweise auch 3- und 4-Schleifen)

8.1.3 W^+W^- -Paarerzeugung in e^+e^- (LEP)

$$e^+e^- \to W^+W^-$$
 für $s = (p+q)^2 > 4M_W^2$

Abbildung 8.3: W^+W^- -Paarerzeugung im LEP

8.1.4 Globale Analyse

alle Observablen $\mathcal{O}_{SM} = \underbrace{\mathcal{O}(m_t, M_H)}_{wg.Schleifen}$. Globaler Fit an alle Daten: einziger freier Parameter ist $M_H \Rightarrow$ ergibt obere Grenze an M_H . (Erinnerung: untere Grenze M > 114 GeV) $M_H \lesssim 190$ GeV mit 95% C.L. unter Berücksichtigung der exp-Grenze $M_H > 114$ GeV ($\Delta \chi^2 = 2, 7 \Rightarrow 95\%$ C.L. einseitiger oberer Grenzwert)

Fazit:

Bei Gültigkeit des SM wird ein leichtes Higgsboson $\lesssim 200~GeV$ erwartet. Alle Observablen werden gut von SM beschrieben, außer $A_{FB}^{(b)}$, knapp 3σ Abweichung (und g-2 für Muon, Niederenergie-Observable)

119

Abbildung 8.4: Einschränkungen an M_H

8.2 Higgs-Bosonen

8.2.1 Eigenschaften

aus Kap.6.4:

$$L_{Higgs} = \underbrace{(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)}_{M_{W}, M_{Z}} - \underbrace{V(\Phi)}_{M_{H}, \text{ Selbst-WW}}$$

 $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$ in unitärer Eichung H: neutrales Skalarfeld \rightarrow Spin-0-Teilchen

$$V = -\mu^0 (\Phi^{\dagger} \Phi) + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2 \equiv V(H)$$

Minimum für $H=0,\,v=\frac{2\mu}{\sqrt{\lambda}}\Rightarrow\lambda=\frac{4\mu^2}{v^2}=\frac{2M_H^2}{v^2}$

$$V = \mu^2 H^2 + \frac{\mu^2}{v} H^3 + \frac{\mu^2}{4v^2} H^4$$
$$\mathcal{L}_{Higgs} = \frac{1}{2} (\partial_\mu H) (\partial^\mu H) - \frac{1}{2} \underbrace{(2\mu^2)}_{=M_H^2} H^2 - \frac{\mu^2}{v} - \frac{\mu^2}{4v^2} H^4$$

8.2. HIGGS-BOSONEN

$$M_H = \mu \sqrt{2}$$

alles durch M_H ausgedrückt, ergibt:

$$\mathcal{L}_{Higgs} = \frac{1}{2} (\partial_{\mu} H) (\partial^{\mu} H) - \frac{M_{H}^{2}}{2} H^{2} - \frac{M_{H}^{2}}{2v} H^{3} - \frac{M_{H}^{2}}{8v^{2}} H^{4}$$

 $M_H\colon$ einziger freier Parameter

Feynman-Regeln:

Zerfälle:

$$\begin{split} H &\to f\bar{f} \sim g_f^2 \sim \frac{m_f^2}{v^2} \\ \text{bevorzugt in} \\ \text{schwere Fermionen } (b\bar{b}, \, \tau^+ \tau^-) \\ \text{Für } M_H > 2m_{top} \text{: } H \to t\bar{t} \end{split}$$

8.2.2 Erzeugung und Nachweis am LHC

Partonische Prozesse zur H-Erzeugung

(i) Gluon-Fusion (1-Schleifen-Ordnung)

Abbildung 8.5: Produktion des Higgs-Bosons am LHC

Nachweis durch Zerfallsprodukte:

 $H\to b\bar{b}:$ keine Chance wegen QCD-Untergrund Für $M_H\lesssim 120~{\rm GeV}\colon H\to\gamma\gamma$

120 $GeV \lesssim M_H \lesssim 160$ GeV:

eines der Vektorbosonen (W^*, Z^*) off-shell

 $M_H > 160 \text{ GeV}$:

4-Fermion-Endzustände aus $W^\pm\text{-},\,Z\text{-}\mathrm{Zerf\ddot{a}}\mathrm{llen}$

allgeimein gilt:

Nachweisrate ~ $\sigma_{\text{Production}} \cdot BR(H \to x)$

 $BR = \frac{\Gamma(H \to x)}{\Gamma_{\text{total}}} \qquad \qquad \text{Verzweigungsverhältnis (Branching Ratio) für} \\ den Zerfall des H in \\ einen Endzustand x \\ \Gamma_{\text{total}} = \sum_{x} \underbrace{\Gamma(H \to x)}_{\text{part. Breite}} \qquad \qquad \text{totale Breite}$

Eine große Erzeugungsrate kann durch ein kleines BR stark reduziert werden

(spezifisches Problem für LHC wegen des großen hadronischen Untergrunds). An einem e^+e^- -Collider sind die Endzustände einfacher zu identifizieren, genauere Messungen der verschiedenen BRs möglich.

8.2.3 Hochenergieverhalten

Betrachte Energien \gg Fermi-Skala (246 GeV). Higgs-Selbstkopplung λ als laufende Kopplung $\lambda(Q)$, abh. von Energieskala Q, wird bestimmt durch die RGE (Evolutionsgleichung, siehe QCD)

$$Q^2 \frac{d\lambda}{dQ^2} = \beta(\lambda) = \frac{3}{16\pi^2} \lambda^2$$

in 1-Schleifen-Ordnung ist $\beta(\lambda)$ bestimmt durch

Lösung mit Anfangsbedingung $\lambda(v) = \frac{2M_H^2}{v^2}$:

$$\lambda(Q) = \frac{\lambda(v)}{1 - \frac{3}{16\pi^2}\lambda(v)\log\frac{Q^2}{v^2}} \qquad \text{Kopplung wächst mit } Q^2$$

 $\lambda(Q)$ divergiert für $Q = \Lambda_c$ mit

$$1 - \frac{3}{16\pi^2}\lambda(v)\log\frac{\Lambda_c^2}{v^2} = 0 \qquad \text{(Landau-Pol)}$$

Wegen $\lambda(v) = \frac{2M_H^2}{v^2}$ ist $\Lambda_c M_H$ -abhängig. Für große M_H wird $\Lambda_c < M_H$, das ist physikalisch nicht sinnvoll. Damit $\Lambda_c \gtrsim M_H$ gilt, muss M_H de Massenlimes $M_H \lesssim 800 \ GeV$ erfüllen. (perturbative Betrachtung, wird jedoch durch nicht-perturbative Studien, z. B. Gitter, bestätigt).

Für kleine M_H , $M_H \lesssim 180$ GeV, ist $\Lambda_c \lesssim 10^{19}$ GeV = $M_P = (\sqrt{G_N})^{-1}$ Planck-Masse (Planck-Skala), G_N : Gravitationskonstante.

Bei M_P ist eine mikroskopische Theorie der Gravitation erforderlich (spätestens dann). $M_H \lesssim 190$ GeV folgt aus dem Fit an die Präzisionsdaten \Rightarrow SM gültig bis zu M_P ?

Zusammenfassung:

Das SM enthält bei hohen Energien $(Q \sim \Lambda_c)$ einen stark-wechselwirkenden Sektor, wo die übilche auf Störungstheorie basierende Phänomenologie nicht mehr gültig ist.

Da das SM ohnehin unvollständig ist (Gravitation), ist das kein grundsätzliches Problem, wenn $\Lambda_c \sim M_P$, d.h. wenn M_H leicht ist.

Andernfalls ist Λ_c deutlich niedriger, so dass das SM durch "neue Physik" zu modifizieren ist.

Entscheidend ist zunächst der Nachweis des Higgs-Bosons und die Bestimmung seiner Masse.

126 KAPITEL 8. STATUS DES STANDARDMODELLS, PERSPEKTIVEN

Kapitel 9

Beyond the Standard Modell

9.1 Massive Neutrinos

 $m_{\nu}=0$ im minimalen Standardmodell. Mit zusätzlichem $\nu_R~(I=0,\,Y=0)$

$$\Rightarrow \underbrace{\left(\frac{g_{\nu}v}{\sqrt{2}}\right)}_{m_0 \text{Dirac-Masse}} \left(\bar{\nu}_R \nu_L + \bar{\nu}_L \nu_R\right)$$

analog zu u-Quarks. Nur bei ν möglich ist ein weiterer Massenterm $M\bar{\nu}_R^c\nu_R$ (Majorana-Term, Teilchen = Antiteilchen), mit M: Majorana-Masse.

$$\left(\begin{array}{cc} 0 & m_0 \\ m_0 & M \end{array}\right) \rightarrow \left(\begin{array}{cc} m_1 & 0 \\ 0 & m_2 \end{array}\right)$$

 $m_1=\frac{m_0^2}{M},\,m_2\simeq M$ für $M\gg m_0.~M\sim 10^9-10^{14}~GeV:\,m_1\ll m_f$ für alle Generationen: $m_\nu^{1,2,3}+{\rm Mischung}~({\rm wie~CKM})$

9.2 Grand Unification

Vereinigung von starker und elektrischer WW. Grand Unified Theories GUT. Idee: $SU(3) \times SU(2) \times U(1) \subset G$. G: einfache Gruppe.

G:mit einziger Kopplung $g\equiv g_U$ einfachste Möglichkeit: SU(5). Generatoren: $T_a,\,a=5^2-1=24,\,5\times5$ -Matrizen.

$$T_a = \begin{pmatrix} \frac{\lambda_a}{2} & (neu) \\ \hline & 3 \times 3 \\ \hline & (neu) & \frac{\sigma_a}{2} \\ & & 2 \times 2 \end{pmatrix}$$

neu: T_a mit neuen Eichbosonen $X_a,$ zusätzlich zu $G_a,\,W_a,\,B.$ Hyperladung: $diag,\,T^{(Y)}=\sqrt{\frac{3}{5}}Y.$

$$D_{\mu} = \partial_{\mu} - ig_{u}T_{a}Z_{\mu}^{a} = \partial_{\mu} - ig_{3}\frac{\lambda_{a}}{2}G_{\mu}^{a} - i\frac{g_{2}}{2}\sigma_{a}W_{\mu}^{a} + i\frac{g_{1}}{2}YB_{\mu} \qquad (a = 1, \dots, 24)$$

Vergleich: $g_3 = g_2 = g_u, g_1 = \sqrt{\frac{3}{5}g_u}$ bei einer hohen Energie - Skala $M_{GUT} =$ M_G bei Skala M_Z : $g_3(M_Z) = g_2(M_Z)$ Input: $\alpha_s(M_Z) = \frac{g_3^2(M_Z)}{4\pi} = 0, 12$

$$\alpha(M_Z) = \frac{1}{129}$$

 $\alpha_i(M_Z) \to \alpha_i(M_G)$ durch RGE (β -Strahlen) ergibt:

$$M_G \simeq 10^{15} \ GeV$$

 $\Rightarrow \sin^2 \theta_w(M_Z) = 0,207$ im Widerspruch zum Experiment (0,2315). Weitere Vorhersagen: Proton - Zerfall: $p \to e^+ + \pi^0$, durch X_a - Bosonen (verletzen Baryonen- und Leptonen Zahl: Quarks \leftrightarrow Leptonen).

 $\tau_p\simeq 10^{31}~y$ im Widerspruch zum Experiment: $(\tau_p>10^{33}~y).$ Andere Gruppe: G=SO(10)

Supersymmetrie (SUSY) 9.3

Symmetrie zwischen Fermionen \leftrightarrow Bosonen \Rightarrow Spin: $\pm \frac{1}{2}$ Unterschied. Multiplets: (e_L, \tilde{e}_L) . \tilde{e}_L : Spin 0. Selektron.

Allgemein: $(f_L, \tilde{f}_L), (f_R, \tilde{f}_R)$ Sfermions. $(\gamma, \tilde{\gamma}), (Z, \tilde{Z}), (W^{\pm}, \tilde{W}^{\pm}), (g, \tilde{g}). \tilde{\gamma}, \tilde{Z}, \tilde{W}^{\pm}, \tilde{g}$: Gauginos, Spin: $\frac{1}{2}$

Massen von \tilde{f}_L, \tilde{f}_R Gauginos: freie Parameter. QZ und Kopplungen wie SM-Teilchen \Rightarrow

- 1. RGE $\alpha_i(M_Z) \xrightarrow{neu} \alpha_i(M_G)$ in SU(5) ok.
- 2. 2-Higgs-Dubletts, $H_1, H_2 \rightarrow 5$ Skalare H^{\pm}, H^0, A^0, h^0

 $M_{h^0} \lesssim 140 \ GeV$

 $M_{H^{\pm}} \sim M_{H^0} \sim M_{A^0}$ schwer, entkoppeln

128

Anhang A

Literaturverzeichnis & Index

130

Literaturverzeichnis

- Bogdan Povh, Klaus Rith Teilchen und Kerne, Springer Verlag, Berlin, 6. Auflage, 2006, ISBN 3-540-65928-5
- [2] Theo Mayer-Kuckuk, Kernphysik Eine Einführung, Teubner Verlag, 7. Auflage, 2002, ISBN 3-519-13223-0
- [3] Hans Frauenfelder, Ernest M. Henley Teilchen und Kerne. Die Welt der subatomaren Physik, Oldenbourg Verlag, 4. Auflage, 1999, ISBN 3-486-24417-5

Index

 $\Delta^+(1232)$ -Resonanz, 5 lorentzinvariante Masse, 6 Nukleoresonanzen, 5 Rosenbluth-Formel, 9