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Coherent Neutrino Nucleus Scattering (CNNS) Use of cryogenic detectors
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Feynman diagramm for CNNS

• Neutral current process ⇒ CNNS independent of
ν-flavor

• For low transferred momenta: wavelength of Z0

comparable to radius of nuclei
⇒ ν scatters coherently off all nucleons
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→GF : Fermi constant, Z: proton number, N : neu-
tron number, θW : Weinberg angle, M : mass of
target nucleus, Erec: recoil energy, Eν: neutrino
energy

• CNNS cross section σtot & 10−44 cm2

⇒ High neutrino flux
→ Reactor neutrinos (Φ ∼ 1013 1

cm2s)

Requirements for the first observation of CNNS:
• small recoil energies (a few keV)

⇒ small energy threshold . 0.5 keV
• small count rate (∼ 10 − 100 per day and kg)

⇒ large target mass of ∼ 1 kg
⇒ Use of cryogenic detectors for first observation
of CNNS
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Recoil spectra of reactor neutrinos for different
target materials

Detector development

Working principle of cryogenic detectors
• Deposited energy is converted into phonons
• Phonons enter Transition Edge Sensor (TES, superconducting thin

film) and thermalize there
⇒ Temperature rise of the TES leads to resistance rise of the super-

conducting film
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Superconducting phase transition

0.8 g germanium absorber
(A. Gütlein, et al., J. Low. Temp. Phys. 151 (2008) 629)

• Absorber: germanium substrate (20×20×0.5 mm3)
• Silicon substrate (5×3×0.5 mm3) with deposited Ir/Au-TES (�=2mm) is

glued onto absorber substrate.

Composite detector with
germanium absorber

55Mn x-ray spectrum (see picture on the
right) measured with this detector (see
photo on the left):
• energy resolution: 0.259 keV at

5.9 keV
• energy threshold: 0.385 keV
Good energy threshold, but
small target mass

→ next step: larger target mass
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55Mn x-ray spectrum recorded with 0.8 g detector
(see left picture). Separation of the Mn-Kα and

Mn-Kβ line can clearly be seen. Energy threshold:
0.385 keV, resolution @ 5.9keV: 0.259 keV

3.2 g germanium absorber
• Absorber: 10×9×9 mm3 germanium cube with polished surfaces
• TES (Ir/Au Film) evaporated directly onto the absorber crystal
• 55Mn x-ray spectrum (see picture on the right) measured with this detector

(see photo below):

Cryogenic detector with 3.2 g
germanium absorber

Comparison of this detector with two
other detectors with a similar absorber,
but with rough surfaces and composite
design (see 0.8 g detector above):
• surface properties have no effect on

energy threshold
• glue in the composite design has no

effect on energy threshold
⇒ Large energy threshold is due to

small TES area (small phonon col-
lection efficiency)
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Future developments
• Development of detectors with 10 g target mass (∼100 10 g detec-

tors for 1 kg target mass) and an energy threshold below 0.5 keV
• Use of Neganov-Luke amplification in semi-conducting target

materials (see also figure below):
– Incident particle produces phonons and electron-hole pairs
– Charges are drifted by an electric field applied to the absorber

crystal
– Additional phonons are produced by drifting charges
– Amplification of the phonon signal proportional to applied field
⇒ Reduction of energy threshold
→ Use of Neganov-Luke amplification with neutrons for the first time
• Use of phonon collectors (superconducting aluminum structures

connected to the TES, see figure below)
• Solar neutrinos as background for the direct dark matter search

(see second poster)

Future improvements
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Amplification is given by:

Etot =

(
1 +

eU

ε

)
· E0

Etot: total energy deposited in the absorber,
e: charge of electron, U : applied voltage, ε:
energy needed to produce one electron hole
pair, E0: energy deposited by incident particle

ε is given by:

ε =
E0

η

η: quatum efficiency for the production of
electron hole pairs

→ Typical value for x-rays for Si:

ε = 3.64 eV

Phonon collectors

Absorber crystal
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• Superconducting structures (Al) do not in-
crease the heat capacity of the TES and thus
do not deteriorate the sensitivity of the phonon
detector

• Phonons entering the phonon collector (Al)
produce quasi particles by breaking up cooper
pairs

• Quasi particles drift to the TES and thermalize
there

⇒ Phonon collection area is increased without an
increase of the heat capacity

⇒ Reduction of energy threshold


