LENA Scintillator Development

ANT 09 University of Hawaii, Manoa August 14, 2009

Michael Wurm

Outline

Light Emission Large-Scale Propagation

Solvent/Solute Candidates

Detector Performance (MC) Energy/Time Resolution

LENA

Low-Energy Neutrino Astrophysics

> organic liquid: in total 70kt

diameter governed by scintillator transparency

Pyhäsalmi design

Scintillator Parameters

Parameter	affects
Light yield	Energy resolution and threshold
Emission spectrum	Light transmission
Fluorescence times	Time resolution, particle discrimination
Attenuation length	Light loss by transmission => energy resolution
Scattering Length	Light yield corrections and signal shape
Quenching	Detector response, energy calibration

Energy Resolution

Basic Ingredients

Light Yield (/MeV)	104				
Photoactive Coverage	30%				
PMT Photoefficiency	20%				
+ Light Absorption/Scattering					
Photoelectrons/MeV	<600				

Light intensity in distance *r*:

$$I(r) \approx \frac{I_0}{4\pi r^2} \mathrm{e}^{-r/L}$$

*I*₀ initial intensity*L* attenuation length:

Time Resolution

For low energy signals (but also for proton decay), sum signal of all PMTs is used for timing.

Contributing Parameters

Fluorescence constants: fast component ca. 3ns slow component(s) >20ns Time of flight diff. O(100ns) Light Scattering Leading edge determines timing Trailing edge for particle ID

Including position reco improves the timing (subtracting TOF).

Light Yield

fluor concentration

light yield dependent on solvent (+C12), fluor type and fluor concentration. *Common:* 10⁴γ/MeV

TUM: Michael Wurm, Patrick Pfahler, Jürgen Winter, Teresa Marrodán, Timo Lewke MPIK: Christian Buck

solvent composition

Fluorescence Decay Times

Fluorescence times and relative contributions for different combinations of solvent and fluor(s). *Typical values:* fast component: A=90%, $\tau=3-7$ ns slow components: A=O(%), $\tau>20$ ns

Dependence of fast signal component on fluor concentration.

Teresa Marrodán, >> Quirin Meindl

Scintillator Transparency

Measured quantity:

attenuation length L

Measurements were done using a 1m scintillator tube at 10nm accuracy at TUM and for a 10cm cell at 1nm accuracy at MPI-K.

Coming soon at TUM:

spectrally resolved transmission measurement over distances >1m

Light Scattering

Measurement of the scattered intensity as a function of both scattering angle and polarization allows to distinguish individual scattering modes: Rayleigh, Mie, also absorption/reemission ...

Scattering Length Results

- no hints for Mie-scat.
- anisotropic scattering in good agreement with Rayleigh expectation
- correct wavelengthdependence found
- literature values for PC, cyclohexane correctly reproduced

Results for λ =430nm

Sample	$\ell_{\rm is}~[{ m m}]$	$\ell_{\rm an} [{\rm m}]$	$\ell_{ m S}~[{ m m}]$	χ^2/ndf	$\ell_{\rm ray}$	
PXEU	$22.8{\pm}1.0$	$33.6{\pm}4.0$	$13.6 {\pm} 0.7 {\pm} 1.0$	1.39	32	\rightarrow L _s = 22±3 m
C12 sa	$258{\pm}54$	$40.9{\pm}3.9$	$35.3{\pm}3.0{\pm}2.2$	0.92	37	after purification
$C12 \mathrm{AC}$	$132{\pm}16$	$48.5{\pm}5.6$	$35.4{\pm}3.1{\pm}2.3$	0.77	37	
LAB p500	$75.3{\pm}5.3$	$40.2{\pm}4.4$	$26.2{\pm}1.9{\pm}1.6$	1.23	45	in Al ₂ O ₃ -column
LAB p550	$60.5{\pm}3.7$	$40.5{\pm}5.2$	$24.3{\pm}1.9{\pm}1.5$	1.29	45	
${ m LAB}550{ m Q}$	$66.3{\pm}5.7$	$40.0{\pm}4.6$	$25.0{\pm}1.9{\pm}1.6$	0.80	45	
CH	n.a	$45.0{\pm}4.5$	$44.9 {\pm} 4.5 {\pm} 2.9$	0.74	44	Michael Wurm

Light Emission Spectra

Search for spectral differences in the light emission after UV/electron excitation.

Influence of fluor type and concentration on the light emission spectrum. *PPO/bisMSB* 400-430 nm

Teresa Marrodán

Quenching Factors

Gamma Quenching light output of low-energetic electrons (E<200keV) by smallangle Compton scattering *in progress ...*

Coming soon: **Proton Quenching** using neutron recoils (AmBe-source, n-generator)

> Timo Lewke, Jürgen Winter

Solvent Candidates

PXE, $C_{16}H_{18}$

density: 0.99 kg/l light yield:

ca. 10.000 ph/MeV fluorescence decay:3ns attenuation length: ≤12m scattering length: 23m

density: 0.80 kg/l light yield: ca. 85% fluorescence decay slower attenuation length: >12m scattering length: 33m LAB, $C_{16-19}H_{26-32}$

density: 0.86 kg/l light yield: comparable fluorescence decay:6ns attenuation length: <20m scattering length: 25m

• For PXE, purification in a Al_2O_3 column is absolutely necessary.

In terms of solvent transparency, a30m diameter detectoris feasible.

Wavelength Shifters

PPO, C₁₅H₁₁NO

primary fluor absorption band: 280-325nm emission band: 350-400nm

bisMSB, C₂₄H₂₂

secondary fluor absorption band: 320-370nm emission band: 380-450nm

PMP, $C_{18}H_{20}N_2$

large Stoke-shift fluor absorption maximum: 294nm emission maximum: 415nm

used in the KARMEN experiment, currently not commercially produced

Concentration: the more fluor the better for light yield, particle ID, timing resolution. But: self-absorption, radiopurity and price have to be considered.

MC Simulation of Light Yield

Input Parameters:

- event in the center
- 10⁴ photons/MeV
- LENA radius: 15m
- optical coverage: 0.3
- photoefficiency: 0.2
- attenuation length
- scattering length

- overall range: 200-450 photoelectrons/MeV (optimum: 600pe/MeV) corresponding energy resolution at 1MeV: 7.1% to 4.6%
- yield can be increased using state-of-the-art photocathodes (ϵ ->40%)

MC of Timing

Rise time determines resolution.

General trends:

- fast fluorescence component has largest impact on both rise time t_s and decay flank τ_s
- no effect of refractive index
- lower scattering length smears out signal: t_s larger
- increase in attenuation length decreases t_s

Solvent Parameters		Energy Res	olution	Time Res.				
Sample	L [m]	$\ell_{\rm S} \ [{\rm m}]$	$\tau_{\rm f} [{\rm ns}]$	n	$Y_{ m pe} \left[/{ m MeV} ight]$	r [%]	$t_{\rm s}~{ m [ns]}$	$\tau_{\rm s} ~[{\rm ns}]$
PXE	10.5 ± 1.5	22 ± 3	2.63(3)	1.57	207^{+100}_{-75}	$7.0^{+1.7}_{-1.3}$	4.7 ± 0.4	27 ± 2
&C12	12 ± 2	34 ± 6	_	_	159^{+72}_{-54}	$7.9^{+1.8}_{-1.3}$	_	—
LAB	15 ± 5	25 ± 3	5.21(6)	1.49	$334\substack{+207\\-179}$	$4.5\substack{+2.5 \\ -1.1}$	6.9 ± 0.5	30 ± 5

Scintillator Parameters

Parameter	affects	LAB	PXE	+C12
Light yield	Energy resolution and threshold			-
Fluorescence times	Time resolution, particle discrimination	-	+	?
Attenuation length	Light loss by transmission => energy resolution	+	-	
Scattering Length	Light yield corrections and signal shape			+
Quenching	Detector response, energy calibration	?	-	
Chemical Purity	Liquid Handling	+	-	