Development of an Optical Module for LENA

Marc Tippmann for the LENA working group

Technische Universität München Lehrstuhl für Experimentelle Astroteilchenphysik

> DPG Frühjahrstagung, Göttingen 2012/02/29

• Event detection in liquid scintillator detectors:

Neutrino scatters off electron

 $\rightarrow~$ electron freed

28m

96n

Ve

- → loses kinetic energy via excitation of scintillator molecules
 - \rightarrow emit light at deexcitation

How can we obtain limits for the sensor requirements?

- Determine influence of sensor properties on overall detector behavior
- Detector properties needed to achieve physics goals known \rightarrow can infer demands on sensor
- Quantify through geant4 Monte Carlo simulations + comparison with previous liquid scintillator experiments (Borexino, KamLAND)
- In progress, first results

Talks:

- Randolph Möllenberg T110.3 (previous talk)
- Dominikus Hellgartner T31.4 (Fr, 10:15)

Which photosensors can fulfill the requirements?

- Photomultipliers (PMTs)
 - + Fulfill all requirements
 - \rightarrow Sensor of choice at the moment

Which sensors could fulfill them?

- Si-Photomultipliers (SiPMs):
 - Better energy resolution, time resolution, detection efficiency
 - Dark count possibly too high
 - \rightarrow Study in detail
- Hybrid detectors
 - Crucial question: Available in high quantities in time for construction?
 - Possibly yes: QUASAR, X-HPD, HAPD, QUPID
 - Probably not: Abalone, LAPPD

Which sensors could fulfill the requirements?

- Featured sensor at the moment: PMTs
 - Most promising models:
 - Hamamatsu R11780 (12") → ≈ 31000 PMTs
 - Electron Tubes Enterprises D784 (11") $\rightarrow \approx 40000 \text{ PMTs}$
- Need to find out missing characteristics for all candidate sensor types
- Also measure properties of candidate PMT series to verify compliance + optimize performance

D784

How can we determine the missing properties?

- Photosensor testing facility is being set up in Munich
 - Was treated in the diploma thesis of Michael Nöbauer
- Measure timing properties, dynamic range, dark count, afterpulsing, energy resolution, ...

How can we determine the missing properties?

- Need to illuminate sensors...
 - a) ...with photons arriving with very low timing uncertainty \rightarrow ps diode laser (Edinburgh Instruments EPL-405mod)
 - b) ...uniformly over the whole area \rightarrow widen beam radius from 100 μ m to 20 cm
 - So far: tried this with lenses with extremely small focal length (ball lenses /GRIN lenses)
 - Works good: in first trial ±20% intensity homogenity in 12×18cm window
 - …but not good enough: goal ≈1%, probably not reachable due to inhomogenities in laser beam profile + optics surfaces

→ Resort to classic solution with diffusor

Laser intensity profile

Intensity profile after optics

How can we determine the missing properties?

- Rest of setup is working
 - Can do spot measurements
 - First test measurements in good agreement with measurements done at the LNGS, Gran Sasso
 - Recently improved measurement rate from ≈10Hz to >2kHz by saving 1k pulses / file instead of 1
 - Evaluation software is running (transit time + charge distribution), now implement more features

Laser intensity profile

Optical Module for PMTs

- → What components do we need for optimum performance?
 - PMT
 - Increase active area + limit field of view
 - → Light concentrator (Winston Cone)
 - Shield PMT from earth magnetic field
 - \rightarrow metal
 - Power supply
 - \rightarrow Voltage divider
 - Pressure
 - → Encapsulation, acrylics glass window + stainless steel housing
 - During filling, tank is filled with water \rightarrow conductive
 - → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane
 - Need to shield scintillator from radioactive contamination contained in the PMT's glass → layer of inactive buffer liquid between scintillator and PMTs

- → What components do we need for optimum performance?
 - PMT
- Increase active area + limit field of view
 - → Light concentrator (Winston Cone)
- Shield PMT from earth magnetic field
 - \rightarrow mu metal
- Power supply
 - \rightarrow Voltage divider
- Pressure
 - \rightarrow Encapsulation, acrylics glass window + stainless steel housing
- During filling, tank is filled with water \rightarrow conductive
 - → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane
- Need to shield scintillator from radioactive contamination contained in the PMT's glass → layer of inactive buffer liquid between scintillator and PMTs

New design: include buffer liquid into pressure encapsulation

- Possible due to advanced background rejection algorithms
- → Bigger active volume!

- → What components do we need for optimum performance?
 - PMT
- Increase active area + limit field of view
 - → Light concentrator (Winston Cone)
- Shield PMT from earth magnetic field
 - \rightarrow mu metal
- Power supply
 - \rightarrow Voltage divider
- Pressure
 - → Encapsulation, acrylics glass window + stainless steel housing
- During filling, tank is filled with water \rightarrow conductive
 - → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane
- Need to shield scintillator from radioactive contamination contained in the PMT's glass → layer of inactive buffer liquid between scintillator and PMTs

New design: include buffer liquid into pressure encapsulation

- Possible due to advanced background rejection algorithms
- → Bigger active volume!
- Possibly also HV transformation + signal preprocessing on site
 - Central unit for arrays of PMTs, not part of optical module
 - Studied in PMm² project

6/8

- → What components do we need for optimum performance?
 - PMT
 - Increase active area + limit field of view
 - → Light concentrator (Winston Cone)
 - Shield PMT from earth magnetic field
 - \rightarrow mu metal
 - Power supply
 - \rightarrow Voltage divider
 - Pressure

OPTICAL MODULE

PMT ARRAY

- → Encapsulation, acrylics glass window + stainless steel housing
- During filling, tank is filled with water \rightarrow conductive
 - → Cast voltage divider into insulator compatible with ultrapure water + liquid scintillator: polyurethane
- Need to shield scintillator from radioactive contamination contained in the PMT's glass → layer of inactive buffer liquid between scintillator and PMTs

New design: include buffer liquid into pressure encapsulation

- Possible due to advanced background rejection algorithms
- → Bigger active volume!
- Possibly also HV transformation + signal preprocessing on site
 - Central unit for arrays of PMTs, not part of optical module,
 - Studied in PMm² project

J.E. Campagne

6/8

How to develop an encapsulation?

• *Design, pressure simulations*, build prototype, pressure tests

How to develop an encapsulation?

 Design, pressure simulations, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

- Created engineering drawings
 - ...for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 - ...for 5-10" PMTs of Hamamatsu + Electron Tubes Enterprises

How to develop an encapsulation?

 Design, pressure simulations, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

- Created engineering drawings
 - …for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 - ...for 5-10" PMTs of Hamamatsu + Electron Tubes Enterprises
- Did first Finite Element Analysis simulations with SolidWorks to determine necessary thicknesses + weight
 - Need encapsulations due to pressure, but weight = radioactivity → keep them as thin as safety allows

How to develop an encapsulation?

 Design, pressure simulations, build prototype, pressure tests

Was treated in Bachelor thesis + continuing work of German Beischler

- Created engineering drawings
 - …for different designs (spherical, conical, cylindrical, elliptical, rotated spline)
 - ...for 5-10" PMTs of Hamamatsu + Electron Tubes Enterprises
- Did first Finite Element Analysis simulations with Solidworks to determine necessary thicknesses + weight
 - Need encapsulations due to pressure, but weight = radioactivity → keep them as thin as safety allows
- Simulations so far were still for the old optical module without the buffer liquid → have to adapt design
- Currently cross-checking results + dependence on simulation parameters and improving simulations
 - $\rightarrow~$ lots of basic questions to be cleared
 - → If somebody has experience with FEA simulations, any advice or help is most welcome!

Conclusions

- Physics goals of LENA set hard requirements for photosensors
- Have started to determine influence of photosensor properties on detector performance with Geant4 Monte Carlo
- Have constructed photosensor test facility in Munich to measure missing sensor properties
- So far PMTs favoured option
 - Some other promising alternative sensors have to be tested
- Designed an optical module for PMTs consisting of Winston Cone, buffer liquid, mu metal, voltage divider, pressure encapsulation
- Have completed first designs + FEA simulations of pressure encapsulations \rightarrow optimize designs, cross-check simulation results

Backup slides

Influence of sensor properties on detector behavior

- Determine influence through Geant4 based Monte Carlo simulations
- Position and energy resolution (Dominikus Hellgartner)
 - Timing uncertainty:
 - First simulations, still fighting some problems with small timing uncertainties
 - First impression: no big influence
 - Dark Noise:
 - No big influence for energies around 1MeV or bigger
 - For 200keV position + energy resolution ≈30% worse
- α/β-discrimination (Randolph Möllenberg)
 - Dark Noise:
 - Strong influence on efficiency
 - Late Pulses + Fast Afterpulses
 - Negligible effect
 - Winston Cones (50°opening angle)
 - Improve separation by factor two

Dominikus Hellgartner

Alternative photosensor types

- Crucial question: Available in high quantities in time for construction?
- Possibly available for first detector:
 - QUASAR (14.6"):
 - Layout: Photocathode → HV → scintillator crystal → small PMT;
 - Very promising sensor in most regards (tts, DN, AP, ...), are even working to further improve design with faster scintillator + fast small HQE PMT;
 - Drawbacks: currently no manufacturer, dynamic range=?
 - X-HPD (8"):
 - Layout: basically as QUASAR
 - Drawbacks: high dark rate, 100-10Hz/cm², dyn. range=?
 - HAPD (13"):
 - Layout: Photocathode \rightarrow HV \rightarrow APD
 - Expect commercial availability in spring 2012 (status Jan. 2011)
 - Drawbacks: dyn. range?
 - QUPID (3"):
 - Layout: same as HAPD
 - Drawbacks: small size, designed for LAr/LXe, dark count @RT =?, QE=?, dyn. range?
- Need to test samples to determine all properties

Alternative photosensor types

- Probably not available in time:
 - Abalone (≈13"):
 - Layout: Photocathode \rightarrow HV \rightarrow scintillator crystal \rightarrow G-APD
 - Advantages: simple, robust + cheap design
 - Status: Prototypes not yet stable under atmospheric pressure
 - LAPPD (scalable):
 - Layout: Photocathode → 2 microchannel plates → anode striplines read out at both ends
 - Advantages: ps time resolution, large area, position sensitive, cheap(?)
 - Status: working prototypes of MCP sheets + electronics, QE still low, no complete prototype yet

LAPPD

Pressure withstanding PMT encapsulations for LENA: **Pressure simulations**

- Simulate behaviour under pressure with a Finite Elements Analysis (FEA) simulation software
 - Engineering drawings and FEA pressure simulations were done with same software
- Software: SolidWorks Educational Edition Academic Year 2010-2011 SP4.0, Simulation Premium package
- Settings: Linear static study, 12bar pressure, node distance 3mm ± 0.15mm
- Materials: High impact resistant acrylic glass, 1,4404 stainless steel X2CrNiMo17-12-2
- Computer: Intel i7-2600, 8GB DDR3-RAM, AMD Radeon HD 6450 1GB GDDR3, Win7 Prof. 64bit
- So far designs + simulations for 5 candidate PMTs:
 - Hamamatsu: R7081 (10"), R5912 (8"), R6594 (5")
 - Electron Tubes Enterprises Ltd.: 9354 (8"), 9823 (5")

- Was treated in a bachelor thesis by German Beischler
 - In consultance with Harald Hess (head of workshop + SolidWorks expert of our chair)
 - Continues these studies!

Pressure withstanding PMT encapsulations for LENA: **Pressure simulations**

Procedure:

- Import PMT contour from engineering drawing in datasheet
- Rotate to obtain model of PMT
- Construct encapsulation based on PMT dimensions and experience from design of the Borexino + Double Chooz encapsulation
- Simulate encapsulation with 12bar pressure applied
 - Apply forces → meshing → simulate to determine factor of safety
 - Vary thicknesses of acrylic glass + stainless steel to find minimum values
- Compare results for different designs regarding weight (U, Th, K impurities in materials), surface (adsorbed Rn) and construction costs

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R7081 (10")

Conical encapsulation:		
Steel:	2mm thickness,	4.38kg
Acrylic glass:	4mm thickness,	0.86kg
Total surface:	0.69m ²	

Spherical encapsulation:		
Steel:	0.5mm thickness,	4.08kg
Acrylic glass:	5mm thickness,	1.48kg
Total surface:	1.01m ²	28

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R5912 (8")

Conical encapsulation:		
Steel:	1mm thickness,	3.24kg
Acrylic glass:	3mm thickness,	0.50kg
Total surface:	0.53m ²	

Spherical encapsulation:			
Steel:	0.5mm thickness,	4.66kg	
Acrylic glass:	4mm thickness,	1.10kg	
Total surface:	0.83m ²	29	

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R6594 (5")

Conical encapsulation:		
Steel:	1mm thickness,	2.77kg
Acrylic glass:	2mm thickness,	0.22kg
Total surface:	0.37m ²	

Spherical encapsulation:			
Steel:	0.5mm thickness,	2.75kg	
Acrylic glass:	4mm thickness,	0.94kg	
Total surface:	0.78m ²	30	

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R6594 (5")

Elliptical encapsulation:		
Steel:	2mm thickness,	3.06kg
Acrylic glass:	2mm thickness,	0.22kg
Total surface:	0.41m ²	

PHOTOCATHODE

SEMIFLEXIBLE LEADS ¢128 ± 2

¢84.5±

Cylindrical encapsulation:			
Steel:	0.5mm thickness,	2.61kg	
Acrylic glass:	2mm thickness,	0.22kg	
Total surface:	0.46m ²	31	