Design and FEA simulations of pressure withstanding PMT encapsulations for LENA and Algorithms to identify fast afterpulses on a previous pulse

Marc Tippmann

Technische Universität München Lehrstuhl für Experimentelle Astroteilchenphysik

> Light2011, Ringberg 2011/10/31

Overview

Pressure withstanding PMT encapsulations for LENA

- Why encapsulate PMTs?
- Design
- Finite Elements Analysis simulations + results
- Next steps

Fast Afterpulses in PMTs + SiPMs

- Causes
- Reasons to study them
- Algorithms to detect fast Afterpulses on the flank of a previous pulse

Summary

Pressure withstanding PMT encapsulations for LENA

Pressure withstanding PMT encapsulations for LENA: Why encapsulate PMTs?

- Next-generation land-based neutrino experiments like HyperK, LBNE or LENA use tanks with heights of 50-100m
 - \rightarrow High pressure at the tank bottom
 - LENA: ≈9.8bar(LAB) + safety margin

 \rightarrow At the moment no available PMT model fulfills requirements

- a) Develop new PMTs (LBNE)
- **b)** House PMTs in encapsulations (LENA)
 - + No restrictions on PMT model to be used
 - Cheaper?
 - Faster development
 - LENA: certainly possible to fulfill requirements
 - Introduce radioactivity

• *Design, pressure simulations*, build prototype, pressure tests

Pressure withstanding PMT encapsulations for LENA: Design

- Configuration
 - Acrylic glass transparent window
 - Stainless steel body housing, one or two parts
 - Also incorporate Mu-metal, Winston Cone and connection to other PMTs + tank
 - not crucial for pressure simulations \rightarrow at a later date
- Different encapsulation designs
 - Conical
 - based on Borexino + Double Chooz encapsulation
 - Spherical
 - as in deep sea neutrino telescopes / IceCube
 - Elliptical
 - Cylindrical
- Create engineering drawings with CAD software:
 - SolidWorks Educational Edition Academic Year 2010-2011 SP4.0

German Beischler Pressure withstanding PMT encapsulations for LENA: Design

- Configuration
 - Acrylic glass transparent window
 - Stainless steel body housing, one or two parts
 - Also incorporate Mu-metal, Winston Cone and connection to other PMTs + tank
 - not crucial for pressure simulations \rightarrow at a later date
- Different encapsulation designs
 - Conical
 - based on Borexino + Double Chooz encapsulation
 - Spherical
 - as in deep sea neutrino telescopes / IceCube
 - Elliptical
 - Cylindrical
- Create engineering drawings with CAD software:
 - SolidWorks Educational Edition Academic Year 2010-2011 SP4.0

German Beischler

Pressure withstanding PMT encapsulations for LENA: **Pressure simulations**

- Simulate behaviour under pressure with a Finite Elements Analysis (FEA) simulation software
 - Engineering drawings and FEA pressure simulations were done with same software
- Software: SolidWorks Educational Edition Academic Year 2010-2011 SP4.0, Simulation Premium package
- Settings: Linear static study, 12bar pressure, node distance 3mm ± 0.15mm
- Materials: High impact resistant acrylic glass, 1,4404 stainless steel X2CrNiMo17-12-2
- Computer: Intel i7-2600, 8GB DDR3-RAM, AMD Radeon HD 6450 1GB GDDR3, Win7 Prof. 64bit
- So far designs + simulations for 5 candidate PMTs:
 - Hamamatsu: R7081 (10"), R5912 (8"), R6594 (5")
 - Electron Tubes Enterprises Ltd.: 9354 (8"), 9823 (5")

- Was treated in a bachelor thesis by **German Beischler**
 - In consultance with Harald Hess (head of workshop + SolidWorks expert of our chair)
 - Continues these studies!

Pressure withstanding PMT encapsulations for LENA: **Pressure simulations**

Procedure:

- Import PMT contour from engineering drawing in datasheet
- Rotate to obtain model of PMT
- Construct encapsulation based on PMT dimensions and experience from design of the Borexino + Double Chooz encapsulation
- Simulate encapsulation with 12bar pressure applied
 - Apply forces → meshing → simulate to determine factor of safety
 - Vary thicknesses of acrylic glass + stainless steel to find minimum values
- Compare results for different designs regarding weight (U, Th, K impurities in materials), surface (adsorbed Rn) and construction costs

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R7081 (10")

	705 2 23 2 46 2 47 2 23 2 247 2 23
10	
	-

Conical encapsulation:			
Steel:	2mm thickness,	4.38kg	
Acrylic glass:	4mm thickness,	0.86kg	
Total surface:	0.69m ²		

Spherical encapsulation:			
Steel:	0.5mm thickness,	4.08kg	
Acrylic glass:	5mm thickness,	1.48kg	
Total surface:	1.01m ²	9	

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R5912 (8")

Conical encapsulation:			
Steel:	1mm thickness,	3.24kg	
Acrylic glass:	3mm thickness,	0.50kg	
Total surface:	0.53m ²		

Spherical encapsulation:			
Steel:	0.5mm thickness,	4.66kg	
Acrylic glass:	4mm thickness,	1.10kg	
Total surface:	0.83m ²	10	

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R6594 (5")

Conical encapsulation:		
Steel:	1mm thickness,	2.77kg
Acrylic glass:	2mm thickness,	0.22kg
Total surface:	0.37m ²	

Spherical encapsulation:			
Steel:	0.5mm thickness,	2.75kg	
Acrylic glass:	4mm thickness,	0.94kg	
Total surface:	0.78m ²	11	

Pressure withstanding PMT encapsulations for LENA **Pressure simulation results:** Hamamatsu R6594 (5")

Elliptical encapsulation:		
Steel:	2mm thickness,	3.06kg
Acrylic glass:	2mm thickness,	0.22kg
Total surface:	0.41m ²	

12

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: ETEL 9354 (8")

- For R5912 (8") conical encapsulation was most promising → detailed study for this type for ETEL 9354
- Minimize weight in dependance of height of conical section
 - Thickness steps reduced to 0.1mm, for most lightweight encapsulation 0.01mm
 - Weight minimal for maximum length of conical part

Height of conical section [mm]	Minimal steel mass [kg]	Minimal acrylic glass mass [kg]	Total surface [m ²]
33	3.45	0.44	0.535
54	3.20	0.43	0.534
70	3.14	0.43	0.535
130	2.94	0.43	0.549

Conical encapsulation:			
Steel:	0.45mm thickness,	2.94kg	
Acrylic glass:	2.40mm thickness,	0.43kg	
Total surface:	0.55m ²		

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: ETEL 9823 (5")

- Plano-concave photo cathode → try flat acrylic glass window
- Very high thickness necessary

→ Probably less material for spherical acrylic glass window needed

Conical encapsulation:Steel:0.6mm thicknessAcrylic glass:17mm thickness

Pressure withstanding PMT encapsulations for LENA **Pressure simulations: cross-check of results**

- Reproducibility
 - Repeated same simulation several times →
 - Same results
 - However only on fast computer results varied for slow computer!
- Vary node distance from 2-11mm
 - No big change for $2mm \rightarrow 3mm$
 - For 11mm unphysical results
 - Where possible repeat simulation with 2mm to verify results

Factor of safety distribution: red areas are unstable (FoS <1)

Pressure withstanding PMT encapsulations for LENA Next steps:

- Further crosschecks
- More exact simulations: reduce node distance (locally or globally), use adaptive methods
- Complete design (fixture for PMT inside encapsulation, filling valve) + create complete optical module: incorporate Mu-metal, Winston Cones, connections to other PMTs + wall
- Optimize encapsulations for least weight + least production costs
- Create + simulate designs for further PMTs (R6091, 9822, R11780, D784)

Adapt design to meet requirements

Influence of PMT implosion on adjacent

Build prototype for PMT of choice

• Distortion analysis

Test in pressure tank

encapsulations

- Aging simulation
- PROTOTICS

SIMULATION +

Fast Afterpulses in PMTs and SiPMs

Fast Afterpulses (fAP): Causes

- Additional pulse(s) occurring after a previous pulse within several 10 ns
- Occur in PMTs as well as SiPMs
- Possible causes:
- PMTs:
 - Light generation in PMT:
 - Bremsstrahlung at dynodes → delay ≈ ½-1 transit time (tt)
 - Ionization / excitation
 - of residual gas molecules near anode → delay ≈ 1tt
 - of molecules/atoms on dynodes (adsorbed/constituents) → delay ≈ ½-1tt
 - Partial inelastic scattering of photo electron on first dynode then elastic scattering → delay ≈ 0-1tt
- SiPM:
 - charge trapping, release time constant ~ 10-100ns

Fast Afterpulses (fAP): Reasons to study them

- Detectors using PMTs/SiPMs: fAP influence
 - Energy resolution
 - Event reconstruction: position + time resolution, tracking
 - SiPM: with increasing overvoltage PDE, fAP probability and cross-talk increase
 - \rightarrow Lose single photon resolution for several photons incident at same time
 - \rightarrow Tradeoff between PDE and energy resolution necessary
 - \rightarrow To be able to reduce fAP probability study fAP to understand mechanisms of production better
- To be able to analyze them first need to identify all fAP in recorded pulses
 - Easy for fAP occurring after end of original pulse
 - Difficult for fAP sitting on flank

19

 \rightarrow Need detection algorithms to study them

Fast Afterpulses (fAP):

Algorithms to detect fast Afterpulses on the flank of a previous pulse

- Used 50000 pulses to develop algorithms
 - Instrumentation:
 - Light source: Edinburgh Instruments EPL-405-mod, 50ps FWHM diode laser, 403nm
 - PMT: ETL 9305 (+1300V), ≈5.5% detected pulses/laser trigger → ≈2.75% 2-photon-pulses for pulses with laser-PMT coincidence
 - FADC: Acqiris DC282, used 2Ch with 4GHz sampling, 10bit
 - Sampled 1500 pulses by eye \rightarrow
 - ≈4.9% fAP on flank of main pulse
 - ≈2.1% after main pulse within 70ns
- Different classes based on recognition criteria:
 - Time
 - Pulse shape
 - Area
- Was treated in a Bachelor thesis by Martin Zeitlmair

Fast Afterpulses (fAP): Detection algorithms: **Time**

• Ratio fall time/rise time

- Principle: fAP on falling flank → time until pulse falls below 10% of pulse height is increased
- Problems:
 - Fake main pulses: if fAP maximum > main pulse maximum, fAP is detected as pulse maximum → ratio too low
- Conclusion:
 - No strong separation visible
 - Can be used for big ratios
 - Use as cross-check after other algorithm for fake main pulses

Fast Afterpulses (fAP): Detection algorithms: Pulse shape

• Subtract pulse

- Principle: subtract expected pulse shape on falling flank → fAP remain + can be found with simple threshold criterium
- Model used for pulse shape
 - Linear interpolation: reliable, but low recognition rate
 - Parabola: low detection rate, problems with pulses with ≈linear decay: "bulgy" pulses
 - Exponential decay: high recognition rate, but bulgy pulses filter through
 - Average pulse shape: same as exponential
- Choose higher threshold for exponential decay / average pulse form

Fast Afterpulses (fAP): Detection algorithms: Pulse shape

• Search maximum/minimum

- Principle: fAP on falling flank produces an additional minimum + maximum
- Methods:
 - Number of higher/lower points in interval around current point: bigger than threshold → extremum;
 - prone to noise

- Three intervals: If maximum of interval 2 is bigger than maxima of interval 1+3 → peak found; more than one peak → fAP
 - Works very good for intervals with >3ns window
 - Next step: include threshold for height difference between minimum and fAP peak to be able to use smaller windows → find more AP which are small or close to peak

Fast Afterpulses (fAP): Detection algorithms: Pulse shape

• Search for inflection points

- Principle: fAP on falling flank produces two additional inflection points → two additional zero crossings in 2nd time derivative
- Problems: up to now jitter from noise too strong
- Conclusion: need to average over more points
- Quadratic difference from average pulse form
 - Principle: integrate squared difference of pulse shape to average pulse shape for each data point; fAP on flank produce irregular pulse shape → higher value
 - Problems:
 - Pulses with small heights apparently have different shape + vary more strongly due to noise
 - Conclusion: should be usable for high values, use separate average pulse form for small pulses

Fast Afterpulses (fAP): Detection algorithms: Area

- Area ratio falling flank/rising flank
 - Principle: fAP on falling flank adds charge → time integral over falling flank gets bigger
 - Problems:
 - Fake main pulses \rightarrow ratio too small
 - Bulgy pulses \rightarrow higher ratios
 - Conclusion:
 - Usable for large ratios
 - For fake main pulses: use as crosscheck after other algorithm

Summary

- Pressure withstanding PMT encapsulations for LENA:
 - Have designed engineering drawings of first encapsulations in CAD + simulated them with FEA software; method established → now refine it
 - Results still very preliminary, need to construct complete optical module and optimize for weight + costs before comparisons between different designs are possible
 - First results look promising

Fast afterpulse detection algorithms

- Developed several algorithms, identified problems
- Still optimizing to eliminate disturbing effects and increase detection rate
- With only small adjustments and combined evaluation of two methods, most algorithms should improve substantially

References

- For further information please refer to:
 - LENA White Paper, http://arxiv.org/abs/1104.5620
 - German Beischler, bachelor thesis, Technische Universität München, August 2011, <u>http://www.e15.physik.tu-</u> <u>muenchen.de/fileadmin/downloads/thesis/bachelor/</u> 2011 BSc German Beischler.pdf
 - Martin Zeitlmair, bachelor thesis, Teschnische Universität München, July 2011, <u>http://www.e15.physik.tu-</u> <u>muenchen.de/fileadmin/downloads/thesis/bachelor/</u> 2011 BSc Martin Zeitlmair.pdf

Backup slides

Cylindric encapsulation Hamamatsu R6594

- Simple form
 - probably easy to produce + low costs
- Steel thickness 0.5mm
- Problem: floor was pushed in → tearing of side walls
 - First solution: enforced floor, however 5mm thickness needed
 - Optimize design: enforce walls in critical areas

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane \rightarrow fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

Attachment to wall

