LENA: tracking detector? Applications for GeV neutrinos

Presented by Juha Peltoniemi

Work done in Excellence Cluster Universe Technische Universität München

In collaboration with Michael Wurm, Lothar Oberauer, Franz von Feilitzsch and others

High energy physics with LENA

- Performance of LENA at high energies not known too well
- Earlier studies up < 1 GeV
 - Proton decay and studies for beta beams (Teresa)
- Some studies being made for HanoHano
 - Learned (Hawaii)
- For Borexino muon studies
 - echidna,...

Simulate high-energy measurement

- A simple Java app "Scinderella.java"
- Initial brute-force simulations to get the feeling
 - Not designed to be a full analysis program
- Uses a simplified internal event generator
- Uses a simplified model for the detector
 - Reduced number of photosensors, no deficiencies
 - Scintillator decay time and pmt time jitter modelled
- Records observation times of photons in photocounters
 - Selectable data loss by errors, smoothing etc
- Compare the light signals of "true event" to "test event"
 - "true event" Monte Carlo
 - "test event" analytic

Control Options Event Measurement Analyse View Layer Help

DETECTOR

Volume = 21206 m3

Photosensor coverage = 6 %

PDE of photosensors = 100 %

ORIGINAL EVENT QE with neutrino energy 2000.0 MeV

Depositable energy 1879.60 MeV Measurable energy 1984.00 MeV muon:1592.13 MeV and 8.00 m.

proton:287.47 MeV and 0.554 m. vertexEnergy =0.00 MeV

MEASUREMENT

measured 320332 photons of 20.56 M. (1.56 %)
FIT (done fit for selected event)
In(L) = 1097186 s=0.00
Vertex at (0.54, 0.42, 14.05)64.60 MeV t0 = 67.73 ns.
Deposited energy 1945.02 MeV Measured energy 2049.42 MeV
Inferred neutrino energy 2066.07 MeV with uncertainty 16.65 MeV
Neutrino energy from lepton angle: 2081.33 MeV [QES]
[0] muon:1642 MeV and 8.24 m.
[1] proton:238 MeV and 0.405 m.
[2] _:0 MeV and 0.000 m.
Predict 319721 photons of 20.49 M emitted. (1.56 %)
best fit original, with measured E= 1984.00, Chi = 922337203685477580

1326 photons

Time 3.97 ns

+18

PMT[2][12]@(13.70,6.10,17.86)

Duration 87.89 ns Duration 107.00 ns

Mean time 8.65 ns. Mean time 9.20 ns.

Decay signal = 18 Decay signal 570.54

+18.00

1320 photons

Time 4.27 ns

In(L) -4140.40

0	M	M	A	N	D	Ľ,	F	it	se	lec	tec	t e	vei	nt
 				_	_			_	-1					

event generated VIEW: top LAYER: photons Mean = 508.46 and variance = 307.20

FINAL VERDICT

Error in measured energy 65.42 MeV = 3.30 %Error in lepton energy 50.16 MeV = 3.15 %Error in lepton track 0.24 m = 3 %, vertex: 0.11 m. Error angle L 0.01 rad = 0 deg (p 0.49 rad = 28 deg) Control Options Event Measurement Analyse View Layer Help

DETECTOR

 $Volume = 21206 m_3$

Photosensor coverage = 6 %

PDE of photosensors = 100 %

ORIGINAL EVENT DIS with neutrino energy 4000.0 MeV

Depositable energy 3460.80 MeV Measurable energy 3984.00 MeV muon:2033.87 MeV and 10.05 m.

proton:141.28 MeV and 0.166 m. vertexEnergy =1.08 MeV pion:350MeV[76ns]pion:322MeV[37ns]pion:611MeV[23ns] MEASUREMENT

measured 600405 photons of 37.86 M. (1.59 %)

FIT (done fit for selected event)

In(L) = 2178201 s=0.00

Vertex at (-6.07, 0.14, 15.89)137.72 MeV t0 = 46.03 ns. Deposited energy 3606.53 MeV Measured energy 4129.73 MeV Inferred neutrino energy 4387.96 MeV with uncertainty 258.23 MeV Neutrino energy from lepton angle: 5311.41 MeV [DIS] [0] muon:2137 MeV and 10.52 m. [1] proton:465 MeV and 1.20 m. [2] pion:87 MeV and 0.256 m. 73.71 ns. [3] pion:194 MeV and 0.796 m. 38.80 ns. [4] pion:585 MeV and 2.96 m. 22.72 ns. Predict 598310 photons of 37.86 M emitted. (1.58 %)

best fit original, with measured E= 3982.70, Chi = 922337203685477580

2147 photons

Time 6.73 ns.

+0+8+6+5

Matalantalin H

2134 photons

Time 6.97 ns

In(L) -8584.61

+1.71+10.70+8.42+5.53

Duration 142.73 ns. Duration 132.00 ns.

Mean time 21.02 ns Mean time 21.54 ns

Decay signal = 19 Decay signal 26.36

event generated VIEW: top LAYER: photons

Mean = 953.02 and variance = 600.22

FINAL VERDICT

Error in measured energy 145.73 MeV = 3.66 % Error in lepton energy 103.41 MeV = 5.08 % Error in lepton track 0.47 m = 5 %, vertex: 0.11 m. Error angle $\perp 0.00$ rad = 0 deg (p 1.40 rad = 80 deg)

2,	Scinderella: neutrino w	th 4000.0 MeV (S	PP from carbon) e	electron^minus+ proton
----	-------------------------	------------------	-------------------	------------------------

Control Options Event Measurement Analyse View Layer Help

DETECTOR

Volume = 21206 m3

Photosensor coverage = 6 %

PDE of photosensors = 100 %

ORIGINAL EVENT SPP with neutrino energy 4000.0 MeV

Depositable energy 3845.19 MeV Measurable energy 3984.00 MeV electron:2004.02 MeV and 5.78 m.

proton:1835.67 MeV and 8.26 m. vertexEnergy =0.00 MeV

pion:6MeV[157ns]

MEASUREMENT

measured 675485 photons of 41.90 M. (1.61 %)

FIT (done fit for selected event)

In(L) = 2302063 s=0.00 Vertex at (0.89, 0.15, 14.71)0.00 MeV t0 = 63.82 ns. Deposited energy 3861.59 MeV Measured energy 4000.40 MeV Inferred neutrino energy 4026.32 MeV with uncertainty 25.92 MeV Neutrino energy from lepton angle: 3676.42 MeV [SPP] [0] electron:1978 MeV and 5.76 m. [1] proton:1878 MeV and 8.50 m. [2] pion:5 MeV and 0.003 m. 157.00 ns. Predict 811213 photons of 43.18 M emitted. (1.88 %)

932 photons

Time 13.93 ns

+7

best fit original, with measured E= 3984.00, Chi = 922337203685477580

871 photons

Time 13.59 ns

In(L) -3615.83

Duration 130.39 ns. Duration 95.00 ns.

Mean time 10.35 ns Mean time 9.75 ns

Decay signal = 7 Decay signal 0.00

+2.59

COMMAND: Fit selected event

event generated VIEW: top LAYER: chi

FINAL VERDICT

Error in measured energy 16.40 MeV = 0.41 % Error in lepton energy -25.60 MeV = -1.28 % Error in lepton track 0.02 m = 0 %, vertex: 0.06 m. Error angle L 0.03 rad = 2 deg (p 0.00 rad = 0 deg)

Results so far

- Very good fit to simple events
 - Almost absolute flavor recognition (even without muon decay signal)
 - Positional accuracy a few cm
 - Angular accuracy few degrees
 - Neutrino angle limited by unseen nuclear recoils
- Good fit to more complicated events, too
 - Three tracks can be fitted if well separated
 - More tracks very challenging
 - Muon track always fittable (if exists)
- So far no flavor misidentifications for any topology
 - Only unconsidered major fluctuations or rare rescatterings

Energy resolution

- In simple events all tracks fitted better than 1 % accuracy
- In complicated events
 - Single tracks fitted less accurately
 - Total light output is fitted at few % accuracy
- Typically the accuracy of the routine better than 1 %
- Larger uncertainties:
 - Nuclear physics: Carbon binding energy, nuclear spillouts etc: uncertainty of 20-40 MeV
 - Misrecognized hadrons: quenching factor significant
 - Neutrons so far lost energy to be studied more
- May assume 5 % accuracy, sufficient for neutrino beams

Recognizing antineutrinos and neutrinos?

- Recognize prompt nucleon?
 - Neutron can be recognized by absorption signal (95 %)
 - Neutron track may be followed
 - Proton track distinguishable if energy > 100 MeV
 - But: nucleon interchange within nucleus (20-30 %) or charged pions may complicate the analysis
- Muon charge can be measured with magnetic field?
 - Bending in a moderate magnetic field 0.1 T or less clearly observable
 - Fluctuations in trajectory (Coulombian scat.) limiting factor
 - Magnetized liquid scintillator needs different photosensor technology

Scinderella: neutrino with 3000.0 MeV (QE from carbon) muon^minus+ proton

Control Options Event Measurement Analyse View Layer Help

 DETECTOR
 Volume = 21206 m3
 B = 0.05 T

 Photosensor coverage = 6 %
 PDE of photosensbrs = 100 %

 ORIGINAL EVENT QE with neutrino energy 3000.0 MeV

Depositable energy 2858.60 MeV Measurable energy 2963.00 MeV muon:2664.15 MeV and 12.87 m. vertexEnergy=0.00 MeV proton:194.45 MeV and 0.290 m.

MEASUREMENT

measured 307529 photons of 31.16 M. (0.99 %)

FIT (studied charge)

In(L) = 1109822 s=0.00 Vertex at (-3.41, 0.02, 0.13)0.00 MeV t0 = 60.79 ns.

Deposited energy 2862.65 MeV Measured energy 2967.05 MeV

Inferred neutrino energy 3101.45 MeV with uncertainty 134.39 MeV

Neutrino energy from lepton angle: 2949.58 MeV [QES]

[0] muon(-1)2643 MeV and 12.78 m.

[1] proton:220 MeV and 0.360 m.

Predict 307745 photons of 2.28 M emitted. (13.51 %)

best fit original, with measured E= 2963.00, Chi = 922337203685477580

COMMAND: Check charge

event generated VIEW: top LAYER: photons

FINAL VERDICT

Error in measured energy 4.05 MeV = 0.14 % Error in lepton energy -21.33 MeV = 0.80 % Error in lepton track 0.09 m = -1 %, vertex: 0.10 m. Error angle L 0.08 rad = 5 deg (p 0.43 rad = 25 deg) -PMT quality perfect177 photons171 photonsDuration 82.94 nsDuration 60.00 nsTime 60.88 nsTime 61.13 nsMean time 6.41 nsMean time 6.16 nsDecay signal = 1Decay signal 0.76+1+0.76In(L) 0.14

Considerations for detector design

- Important
 - Fast scintillator (< 5 ns)
 - Small scattering of light in liquid
 - Very good photosensors & electronics:
 - Total photon count & start time for each PMT very important
 - Recording individual photon times would be nice but not mandatory
- Less relevant
 - Light yield & light attenuation
 - Noise
- The buffer and the shield can be used to extend the fiducial volume

DETECTOR LAYOUT

Atmospheric neutrinos

- Vertical direction optimal upward going neutrinos best
- Three interesting ranges
 - 10-20 GeV: upward-going neutrinos, satisfactory energy resolution and good angular resolution
 - Around 3 GeV matter resonance: ability to differentiate neutrinos from antineutrinos very valuable
 - Near 100 MeV: study solar neutrino parameters. A small window for LENA?
- A task to be done

Neutrino beams

Conventional wide band beam: 1-6 GeV (< 100 M€)

- Baseline > 1000 km preferred
- Vertical alignment not a burden if wide enough
- Good for $\sin^2(2 theta) > 10^{-2}$
- Beta beam: 300 MeV 5 GeV (1 G€)
 - LENA very good with a high-energy beta beam
 - May study $\sin^2(2theta) > 10^{-3}$ or less, depending on beam power and detector size
 - Larger detectors preferable, with horizontal alignment
- Neutrino factory 3 GeV 50 GeV (>2 G€)
 - Requires a magnetic detector (B > 0.1 T)
 - For E > 5 GeV detector to be aligned parallel to the beam
 - Good for $\sin^2(2 theta) \approx 10^{-3} ... 10^{-4}$

Conclusions

- Large volume liquid scintillation detector serves as a good tracking detector for high-energy events (> 1 GeV)
 - Flavor recognition very good
 - Energy resolution typically better than 5 %
 - Capacity mostly limited by physics
- Very good detector for neutrino beams
 - Wide band beam
 - High-energy beta beam
 - Low-energy neutrino factory: Magnetized liquid scintillator
- Interesting for atmospheric neutrinos
- Challenges for the design of the detector
 - Light sensors, electronics, data acquisition

WBB with LENA @2300 km

plotfile using 1:2:3 mass hierarchy: theta_13 and delta for 50 kt

Some comparisons

