Looking into the centre of a supernova with LENA

Jürgen Winter juergen.winter@ph.tum.de

Institut E15 Physik-Department Technische Universität München

DPG Frühjahrstagung Heidelberg, 03/09/2007

Jürgen Winter (TUM)

Outline

Core Collapse SN ν

2 Neutrino Reaction Channels in LENA

3 Spatial Reconstruction

4 Summary and Outlook

Jürgen Winter (TUM)

Goals

Information about core collapse SN

- average ν energies $\langle E_e \rangle, \langle E_{\overline{e}} \rangle, \langle E_x \rangle$
- ratio of luminosities
- overall normalization of the fluxes $\frac{E_b}{D^2}$
- Information about ν properties (Skadhauge hep-ph/0611194)
 - mass hierachy
 (
 — Matter Effect in SN)
 - ► strong bounds on θ_{13} (\rightarrow Earth Matter Effect)

Jürgen Winter (TUM)

Neutrino Production in Core Collapse Supernovae

time evolution

Liebendoerfer et al. astro-ph/0207036

- SN at 10 kpc, 8 M_{\odot}
- neutronization: ve

energy spectra

Totani et al. astro-ph/9710203

- neutrino trapping
 → thermal spectra
- thermalization: all flavours

Jürgen Winter (TUM)

Reaction Channels I

LENA properties

- Scintillator, \sim 40 kton fiducial volume
- total \sim 20,000 events for a SN @ 10 kpc

Charged Current Interaction

• $\overline{\nu}_e + \rho \rightarrow n + e^+$

 $n + p \rightarrow d + \gamma$ (2.2 MeV)

•
$$\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}$$

 ${}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e}$

• $\nu_e + {}^{12}\text{C} \rightarrow {}^{12}\text{N} + e^ {}^{12}\text{N} \rightarrow {}^{12}\text{C} + e^+ + \nu_e$ ~8700 events: delayed coinc. mean capture time $\tau \approx 250 \mu s$

 \sim **500 events**: delayed coinc. lifetime τ = 20.20*m*s

 \sim 85 events: delayed coinc. lifetime $\tau = 11.00 ms$

Reaction Channels II

Elastic Scattering

•
$$\nu_{x} + e^{-} \rightarrow \nu_{x} + e^{-}$$

•
$$\nu_{x} + \rho \rightarrow \nu_{x} + \rho$$

\sim 610 events

\sim 5000 events

 quenched proton recoil spectra

$$\triangleright E_{thr} = 0.4 MeV$$

▷ mainly ν_X (Beacom hep-ph/0205220)

Jürgen Winter (TUM)

Reaction Channels III

Neutral Current

•
$$\nu_{\chi} + {}^{12}C \rightarrow {}^{12}C^* + \nu_{\chi}$$

 ${}^{12}C^* \rightarrow {}^{12}C + \gamma$

 \sim 2900 events 15.11 MeV γ

Reactions on ${}^{13}C$ (abundance \sim 1%)

•
$$\nu_{\chi} + {}^{13}\mathrm{C} \rightarrow {}^{13}\mathrm{C}^* + \nu_{\chi}$$

 ${}^{13}\mathrm{C}^* \rightarrow {}^{13}\mathrm{C} + \gamma$

3.68 MeV γ

$$u_e + {}^{13}\text{C} \rightarrow {}^{13}\text{N} + e^-$$
 ${}^{13}\text{N} \rightarrow {}^{13}\text{C} + \nu_e + e^+$

delayed coinc. $E_{thr} = 2.22 \text{ MeV}$

Monte Carlo Simulation with Geant4

Channel discrimination

- various signatures: delayed coincidence, monoenergetic gamma, proton recoil
- \sim 20,000 events in 10s \rightarrow Spatial Reconstruction

Monte Carlo Simulation

- Geometry:
 - ▷ length 100m, radius 13m
 - $\triangleright~\sim$ 13500 PMTs (arnothing 50*cm*)
 - \rightarrow 30 % surface coverage
 - ▷ PMTs: time jitter 1ns, efficiency 20 %
- Scintillator Physics
 - Scintillator parameters from experiments at TUM (talk M.Wurm)
- Output:
 - ▷ PMT Number, Hit time, No. of Hits

Monte Carlo Simulation with Geant4

Channel discrimination

- various signatures: delayed coincidence, monoenergetic gamma, proton recoil
- \sim 20,000 events in 10s \rightarrow Spatial Reconstruction

Monte Carlo Simulation

Geometry:

- ▷ length 100m, radius 13m
- ▷ ~ 13500 PMTs (Ø 50*cm*)
 - \rightarrow 30 % surface coverage
- PMTs: time jitter 1ns, efficiency 20 %
- Scintillator Physics
 - Scintillator parameters from experiments at TUM (talk M.Wurm)
- Output:
 - ▷ PMT Number, Hit time, No. of Hits

Jürgen Winter (TUM)

Monte Carlo Simulation with Geant4

Channel discrimination

- various signatures: delayed coincidence, monoenergetic gamma, proton recoil
- \sim 20,000 events in 10s \rightarrow Spatial Reconstruction

Monte Carlo Simulation

- Geometry:
 - ▷ length 100m, radius 13m
 - $\triangleright ~\sim$ 13500 PMTs (\varnothing 50*cm*)
 - \rightarrow 30 % surface coverage
 - PMTs: time jitter 1ns, efficiency 20 %
- Scintillator Physics
 - Scintillator parameters from experiments at TUM (talk M.Wurm)
- Output:
 - ▷ PMT Number, Hit time, No. of Hits

Jürgen Winter (TUM)

Jürgen Winter (TUM)

Jürgen Winter (TUM)

Jürgen Winter (TUM)

Jürgen Winter (TUM)

Histograms; Example: e^- and e^+ (10 MeV each)

Jürgen Winter (TUM)

Histograms; Example: e^- and e^+ (10 MeV each)

Jürgen Winter (TUM)

Hit Time

Jürgen Winter (TUM)

Summary and Outlook

Summary

- Capabilities of LENA for SN ν
 - ▷ Energy spectrum for ν_e , $\overline{\nu}_e$ and ν_x
 - ▷ Separate measurement of F_{ν_e} , $F_{\overline{\nu}_e}$ and F_{ν_x} $x = \mu, \tau$
- Geant4 simulation finished

Outlook

- Development of an Reconstruction Program
 - Maximum Likelihood Method
 - Neural Network
- Optimization of PMT distribution, Light concentrators
- Further studies on LENA potential in SN ν