

LENA

M. Wurm

LENA

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

LENA

Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos

M. Wurm

January 18, 2006

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

LENA

M. Wurm

LEN/

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Y Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

LENA

- Detector
- Physics Goals
- Scintillator

2 Optical Properties

- Light Yield
- Attenuation
- Photoelectron Yield
- Scattering

3 SRN

- Phenomenology
- SRN Spectrum
- Background
- Spectroscopy

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The LENA Detector

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Physics Goals

LENA

M. Wurm

Physics Goals

about 50 kt of liquid scint	llator, so:
-----------------------------	-------------

- Solar Neutrinos
- Neutrino Properties
- Supernovae Neutrinos
- Supernovae Relic Neutrinos
- Geoneutrinos
- Proton Decay
- Indirect Dark Matter Search

 2.10^{4} 6/a $(0.4-4) \cdot 10^3/a$ $\tau_{\rm p} > 4.10^{34} {\rm a}$

 $5.4 \cdot 10^{3}$ /d

Physics Goals

LENA

M. Wurm

Physics Goals

about 50 kt of liquid scintillator, so	:
--	---

- Solar Neutrinos
- Neutrino Properties
- Supernovae Neutrinos
- Supernovae Relic Neutrinos
- Geoneutrinos
- Proton Decay
- Indirect Dark Matter Search
- but! high transparency needed attenuation length $\lambda_{att} \sim 10$ m

Proposed Scintillator

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

PhenylXylylEthane	$C_{16}H_{18}$	
specific gravity:	0.986 <i>kg</i> /ℓ	
flash point:	160 ° <i>C</i>	
HMIS rating:	0 – 1	
CTF2:	$\lambda_{\it att} \sim$ 4m	
\Rightarrow Al ₂ O ₃ -column purification		

Dodecane $C_{12}H_{26}$	
specific gravity:	0.749 <i>kg</i> /ℓ
flash point:	74 ° <i>C</i>
HMIS rating:	0-2
attenuation length:	>10m

Compton backscattering provides monoenergetic e^- (480*keV*) \Rightarrow relative measurement of different samples

Measurement of Light Yield Results

LENA

M. Wurm

LENA

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Y Scattering

SKN Phenomenology SRN Spectrum Background Spectroscopy

Summary

light yield depending on...

solvent composition

fluor concentration

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - ∽ へ ⊙

Measurement of Attenuation Length Experimental Setup

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenolog SRN Spectrum Background Spectroscopy

Summary

- LED emits short light pulses at ~430nm
 ⇔ emission band of scintillation light
- both absorption and scattering reduce intensity ⇒ total attenuation measured

(日) (字) (日) (日) (日)

•
$$I(x) = I_{in} \cdot e^{-x/\lambda_{att}}$$

x tube length λ_{att} attenuation length

lin infalling intensity

I(x) measured intensity

Measurement of Attenuation Length Results

LENA

M. Wurm

LENA

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

Attenuation Length @ $430\pm10^*$ nm [in m]				
Sample		purified	Garching	MPI-K HD
PXE	CTF2	Х	1.77±0.02	2.25±0.21
	Dixie	×	$2.26{\pm}0.03$	-
	Nippon	\checkmark	-	9.3±0.4
Dodecane	90%+	Х	3.65±0.04	-
	99%+	×	-	12.1±1.0

exact LED emission wavelength unknown

Results:

- Al₂O₃-column purification effective
- adding high purity Dodecane would increase λ_{att}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Photoelectron Yield Approximation

LENA

M. Wurm

γ

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yield Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

approximated yield of pholoelectrons (per MeV):

$$Y_{pe} = Y_L \cdot rac{2}{3} \cdot e^{-R/\lambda_{att}} \cdot c_{PM} \cdot \varepsilon_{PM}$$

 Y_L light yield; 2/3 geometry *R* detector radius c_{PM} PM coverage ε_{PM} quantum efficiency

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

scintillator		scintillator		$\mathbf{Y}_L / \mathbf{Y}_{CTF2}$	$\lambda_{att,prop}$	Y _{pe}
(Al ₂ O ₃ -purifi	ed)	(±2%)	[m]	[MeV ⁻¹]		
PXE (6g/ℓ P	PO)	1.01	9.3±0.4	100 ± 6		
proportion	100:0	0.92	9.3±0.4	91 ± 6		
of PXE to	40:60	0.81	11.0±1.0	100 ± 11		
Dodecane	20:80	0.78	11.6±1.1	102 ± 11		
(2g/ℓ PPO)	0:100	0.37	12.1±1.0	50 ± 5		

sufficient photoelectron yield in both cases!

Photoelectron Yield GEANT4 Simulations

LENA

M. Wurm

LENA

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yield

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

• attenuation combines light absorption and scattering, so

$$I(x) = I_{in} \cdot e^{-x/\lambda_{abs}} \cdot e^{-x/\lambda_{scat}} = I_{in} \cdot e^{-x/\lambda_{att}}$$

• scattered light is only partially lost to PMs $\Rightarrow \lambda_{abs}, \lambda_{scat}$ important for pe simulations

$\lambda_{\textit{att}}$ (m)	λ_{abs} (m)	$\lambda_{\textit{scat}}$ (m)	Ype (/MeV)
5	10	10	58
7	14	14	116
9	18	18	161
10	12	60	110
10	15	30	145
10	20	20	180
10	30	15	230
10	60	12	303

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Measurement of Scattering Length Experimental Setup

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Measurement of Scattering Length Results

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

Sample	$\lambda_{\it scat}$ [m]
PXE	$9.6^{+2.9}_{-1.7}$
PXE (Al ₂ O ₃ -purified)	23 ⁺¹⁶
Dodecane 90%+	13 ⁺⁵

Further aims:

- improved accuracy of the measurement (higher statistics)
- investigation of further samples (Dodecane 99%+, mixtures ...)
- determination of the proportions of Rayleigh- to Mie-scattering in the samples

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LENA

M. Wurm

LENA

Detector Physics Goal: Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

Supernovae Relic Neutrinos

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)<

Phenomenology What are Supernovae Relic Neutrinos?

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

- Supernovae release
 99% of their gravitational binding energy in vs, all flavours are generated
- all SN contribute to an isotropic background of νs, the SRN
- energies of vs emitted by SN at z>0 are red-shifted
- $\bar{\nu}_e$ can be detected by inverse beta decay $\bar{\nu}_e + p \rightarrow n + e^+$
- SK limit: 1.2 ν
 _e/cm²s for E_ν >19.3 MeV

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Phenomenology Model Calculations

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Y Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

spectral form and flux of the SRN depend on:

SN ν -spectra

- influence spectral form
- insufficient exp. data
- three SN models: Lawrence Livermore - LL Keil Raffelt & Janka - KRJ Thompson Burrows & Pinto - TBP

Star Formation Rate (SFR)

- corresponds to SN rate
- UV-, H_α- and FIRobservations are impeded by dust extinction

・ロト ・ 同ト ・ ヨト ・ ヨ

LENA

M. Wurm

LENA Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

・ロト・西ト・西ト・日・ 日・ シック

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

SRN Spectrum Background Spectroscopy

Summary

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

thresholds:

• inverse β -decay E_{ν} > 1.8*MeV*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

thresholds:

- inverse β -decay $E_{\nu} > 1.8 MeV$
- atmospheric $\bar{\nu}_e s$ E_{ν} < 30*MeV*

・ロット (雪) (日) (日)

э

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

thresholds:

- inverse β -decay E_{ν} > 1.8*MeV*
- atmospheric $\bar{\nu}_e s$ $E_{\nu} < 30 MeV$
- reactor $\bar{\nu}_e s$ $E_{\nu} > 10 MeV$?

・ロット (雪) (日) (日)

-

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

thresholds:

- inverse β -decay E_{ν} > 1.8*MeV*
- atmospheric $\bar{\nu}_e s$ E $_{\nu} < 30 MeV$
- reactor $\bar{\nu}_e s$ $E_{\nu} > 10 MeV$?

 \Rightarrow 22-42 events in 10a!

・ロット (雪) (日) (日)

-

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

thresholds:

- inverse β -decay $E_{\nu} > 1.8 MeV$
- atmospheric $\bar{\nu}_e s$ E $_{\nu} < 30 MeV$
- reactor $\bar{\nu}_e s$ $E_{\nu} > 10 MeV$?

 \Rightarrow 22-42 events in 10a!

H₂O-Čerenkov detectors

- spallation products
- invisible muons

< ロ > < 同 > < 回 > < 回 >

 $\Rightarrow \text{no energy window!}$

-

Background Lower E_v Threshold

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

low energy threshold very important to see SRN contribution of z>1 regions!

 $\Rightarrow \text{ reactor } \bar{\nu}_e \text{ flux and} \\ \text{spectra for } E_\nu {>} 8 \text{MeV} \\ \text{have to be carefully} \\ \text{considered} \\ \end{cases}$

 \Rightarrow suitable detector location (far from nuclear power plants) and high energy resolution needed

イロト イポト イヨト イヨト

TECHNISCHE UNIVERSITÄT MUNCHEN

Background Reactor $\bar{\nu}_e$ spectra - first approach

M. Wurm

LENA

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

3

E<8MeV parameterised spectra of U&Pu E>8MeV neutron-rich bromine isotopes

Background Difficulties

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

- β -decays: not always to ground state \Rightarrow lower $\bar{\nu}_e$ energies
- additional elements with high endpoints: ⁹⁶Rb, ⁹⁷Rb, ⁹⁸Rb (Q=12.4 MeV)
- only the $\bar{\nu}_e$ -spectrum corresponding to ²³⁵U has actually been measured to E=12MeV
- ²³⁸U may play an important role

SRN Spectrum LENA placed at different locations

TECHNISCH

UNIVERSITÄT

M. Wurm

Detector Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yi Scattering

Phenomenolog SRN Spectrum Background Spectroscopy

Summary

Energy Window (Pyhäsalmi): 10.5 MeV $< E_{\nu} < 30$ MeV, corresponding to 22-42 SRN events in 10 years Reactor background: ~1700 events per year

(日)

SRN Spectroscopy χ^2 -tests

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

- MC spectra were generated for all models
- discrimination method: χ²-tests comparing MC to all model spectra

Results:

- spectroscopy with LENA is possible
- LL and TBP model could be separated after 10 years with more than 90% C.L.

Summary

LENA

M. Wurm

LENA

Detector Physics Goals Scintillator

Optical Properties Light Yield Attenuation Photoelectron Yie Scattering

SRN

Phenomenology SRN Spectrum Background Spectroscopy

Summary

- sufficient attenuation lengths ($\lambda \sim R$) are possible
- possible scintillators are pure PXE or mixtures with high percentages of Dodecane (+30% free p)
- measurement of scattering length important
- energy window for SRN detection in LENA, about 22-42 events in 10 years
- spectroscopy seems to be possible
- reactor background crucial for detecting z>1 SRN contribution

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LENA

M. Wurm

LENA

Physics Goal Scintillator

Optical Properties Light Yield Attenuation Photoelectron Y Scattering

SRM

Phenomenology SRN Spectrum Background Spectroscopy

Summary

