

LENA

Low-Energy Neutrino Astronomy

Large-volume (50kt) liquid-scintillator detector

Outline

- Detector Layout
- Low Energy Physics
- Potential for High Energies
- Current R&D Activities

Liquid Scintillator ca. 50kt PXE/LAB **Inner Nylon Vessel** radius: 13m **Buffer Region** inactive, $\Delta r = 2m$ Steel Tank, 13500 PMs r = 15m, h = 100m,optical coverage: 30% Water Cherenkov Veto 1500 PMTs, $\Delta r > 2m$ fast neutron shield **Egg-Shaped Cavern** about 10⁵ m³ Overburden: 4000 mwe

Detector Layout

- design based on experience with Borexino
- in total 70 ktons of organic solvent,50 kt of scintillator
- cylindrical tank:100m height,30m diameter
- dimensionsgoverned byliquid transparency

Low Energy Physics

Physics Objectives

- Neutrinos from galactic Supernovae
- Diffuse Supernova neutrinos
- Solar neutrinos
- Geoneutrinos
- Reactor neutrinos
- Indirect dark matter search

Detector Performance

- Good energy resolution
- Low detection threshold
- Excellent background discrimination
- Low background by purification
- No directional resolution

Galactic SN Neutrinos in LENA

 v_{e} from neutronisation burst $v\overline{v}$ pairs of all flavors from protoneutronstar cooling

For "standard" SN (10kpc, $8M_{\odot}$): ca. 13k events in 50kt target

Channel	Rate	Threshold (MeV)	Spectrum
$v_e p \rightarrow n e^+$	8900	1.8	✓
$v_e^{12}C \rightarrow ^{12}N e^{-}$	200	17.3	(✓)
$\overline{\nu}_e^{12}C \rightarrow ^{12}B e^+$	130	13.4	(✓)
$v^{12}C \rightarrow^{12}C^*v$	860	15.1	X
$\nu p \rightarrow p \nu$	2200	1.0	✓
$\nu e^{-} \rightarrow e^{-} \nu$	700	0.2	✓

Scientific Gain of SN Observation

Astrophysics

- Observe neutronisation burst
- Cooling of the neutron star flavor-dependent spectra and luminosity, time-dev.
- Propagation of the shock wave by envelope matter effects
- SNEWS

Neutrino physics

- θ_{13} and ν mass hierarchy:
 - neutronization burst
 - resonant flavor conversion in stellar envelope
 - Earth matter effect
- Observation of collective neutrino oscillations
- more exotic effects ...

Diffuse SN Neutrinos in LENA

Regular galactic Supernova rate:

1-3 per century

Alternative access:

- isotropic v background generated by SN on cosmic scales
- redshifted by cosmic expansion
- flux: 100/cm²s of all flavours
- rate too low for detection in current neutrino experiments

In LENA: 2-20 $\overline{\nu}_{e}$ per year (50kta)

Backgrounds for DSN Search in LENA

Detection via Inverse Beta Decay

$$\bar{v}_e^+ + p \rightarrow n + e^+$$

allows discrimination of most single-event background limiting the detection in SK

Remaining Background Sources

- reactor and atmospheric \overline{v}_e 's
- cosmogenic backgrounds

Scientific Gain

- first detection of DSN
- information on average SNv spectrum
- complementary information on cosmic star formation rate

Expected rate: 2-20 $\overline{\nu}_e$ /(50 kt yrs) (in energy window from 10-25MeV)

Solar Neutrinos in LENA

Channel	Source	Neutrino Rate [d ⁻¹]	
		BPS08(GS)	BPS08(AGS)
ve	pp	24.92 ± 0.15	25.21±0.13
10000000	pep	365 ± 4	375±4
	hep	0.16 ± 0.02	0.17 ± 0.03
(18kt)	⁷ Be	4984±297	4460±268
	^{8}B	82±9	65±7
	CNO	545±87	350 ± 52
¹³ C	$^{8}\mathrm{B}$	1.74 ± 0.16	1.56 ± 0.14

Detection Channel

elastic v-e scattering, E > 0.2 MeV

Background Requirements

- U/Th concentration of 10⁻¹⁸ g/g (achieved in Borexino)
- shielding of >4000 mwe for CNO/pep-v measurement

Scientific Motivation

- determination of solar parameters (metallicity, CNO contribution)
- search for temporal modulations in
 ⁷Be-v flux (on per mill level)
- probe the MSW effect in the vacuum transition region → new osc. physics
- search for $v_e \rightarrow \overline{v}_e$ conversion

Geoneutrinos

IBD threshold of 1.8 MeV

 $\bar{\nu}_{\rm e}$ by U/Th decay chains

At Pyhäsalmi

expected rate $2x10^3 / 50$ kta reactor-v bg 700

Scientific Gain

- determine relative ratio of U/Th
- measure contribution of U/Th decays to Earth's total heat flow
- with several detectors at different sites: disentangle oceanic/continental crust
- test for hypothetical georeactor

Influence of Detector Location

Physics Objectives

- Proton decay
- Long-baseline neutrino beams
- Atmospheric neutrinos

Detector Properties

- depends on tracking and particle identification capabilities
- all particles are visible
- some experience from cosmic muons in Borexino/KamLAND

Proton Decay into K⁺√

Signature $p \rightarrow K^+ \overline{\nu}$

 $\hookrightarrow \mu^+\nu_\mu / \pi^0\pi^+$

coincidence: $\tau_{\rm K}$ = 13 ns

energy: 250-450 MeV

modified by Fermi motion for ¹²C

Background

atmospheric v's rejected

by rise time cut: **efficiency 67%**

hadronic channel: <1 per 1 Mt yr

(Kaon production) @ 4kmwe

Current SK limit: 2.3x10³³ yrs

Limit for LENA if no event is observed in 10 yrs:

 $\tau_p > 4x10^{34} \, \text{yrs} \, (90\% C.L.)$

Tracking of Single Particles

HE particles create along their track a light front very similar to a Cherenkov cone.

Single track reconstruction based on:

- Arrival times of 1st photons at PMTs
- Number of photons per PMT

Sensitive to particle types due to the ratio of track length to visible energy.

Angular resolution of a few degrees, in principal very accurate energy resolution.

Considerable effort is also made in connection with the scintillator LBNE option for DUSEL -- J. Learned, N. Tolich ...

Tracking Performance

Single Tracks/Single Pion Prod.:

- Flavor recognition almost absolute
- Position resolution: few cms
- Angular resolution: few degrees
- Energy resolution: ca. 1% for 2-5 GeV range, depends on particle, read-out information

Multiparticle Events:

- 3 tracks are found if separated
- more tracks very demanding
- muon tracks always discernible
- overall energy resolution: few %
- track reconstruction less accurate

Resolution of HE Neutrino Events

CC events from HE ν 's usually involve:

Quasi-elastic scattering E < 1 GeV

■ Single-pion production E = 1-2 GeV

■ Deep inelastic scattering E > 5 GeV

→ Resulting light front/PMT signals are superposition of single-particle tracks.

CC neutrino reaction cross-sections on Carbon, MiniBooNE, hep-ex/0408019

Multi-Particle Approach:

(Juha Peltoniemi, arXiv:0909.4974)

- Fit MC events with combinations of test particle tracks.
- Single-event tracking as input.
- Use full pulse-shape information of the individual PMTs to discern the particles.
- Decay particles and capture processes (n's) provide additional information.

LENA as Long Baseline Detector

Baseline

- CERN to Pyhäsalmi: 2288 km
 (>10³ km for mass hierarchy)
- 1st oscillation maximum 4.2 GeV
- on-axis detector

Beam properties

- wide band (1-6 GeV): E_{max}=1.5 GeV
- power: 3.3 x 10²⁰ pot/yr, 1.5 MW
- 5 yrs v + 5 yrs \overline{v}

Preliminary GLoBES result

■ 3 σ sensitivity on θ_{13} , δ_{CP} , mass hierarchy for $\sin^2(2\theta_{13})>5x10^{-3}$

[arXiv:0911.4876]

LENA as Long Baseline Detector

Baseline

- CERN to Pyhäsalmi: 2288 km
 (>10³ km for mass hierarchy)
- 1st oscillation maximum 4.2 GeV
- on-axis detector

Beam properties

- wide band (1-6 GeV): E_{max}=1.5 GeV
- power: 3.3 x 10²⁰ pot/yr, 1.5 MW
- 5 yrs v + 5 yrs \overline{v}

Preliminary GLoBES result

■ 3 σ sensitivity on θ_{13} , δ_{CP} , mass hierarchy for $\sin^2(2\theta_{13}) > 5x10^{-3}$

[arXiv:0911.4876]

LENA as Long Baseline Detector

Baseline

- CERN to Pyhäsalmi: 2288 km
 (>10³ km for mass hierarchy)
- 1st oscillation maximum 4.2 GeV
- on-axis detector

Beam properties

- wide band (1-6 GeV): E_{max}=1.5 GeV
- power: 3.3 x 10²⁰ pot/yr, 1.5 MW
- 5 yrs v + 5 yrs \overline{v}

Preliminary GLoBES result

■ 3 σ sensitivity on θ_{13} , δ_{CP} , mass hierarchy for $\sin^2(2\theta_{13})>5x10^{-3}$

[arXiv:0911.4876]

What remains to be done?

- Refinement of track reco in GEANT4.
 (light scattering, PM density, neutrons)
- Study of hadronic effects (quenching, secondary interactions)
- Evaluation of low-energy limit to directionality \rightarrow proton decay into π^0e^+
- Potential of atmospheric neutrino studies (from 50 MeV to 20 GeV)
- Minimum hardware requirements:
 - PM (number/size, dynamic range, time jitter)
 - read-out electronics (FADCs?)

- ...

Tank Design Study

sandwich

steel tank

Four options:

- conventional steel tank
- sandwich steel tank
- sandwich concrete tank
- hollow-core concrete tank

Scintillator Solvents

PXE, $C_{16}H_{18}$

density: 0.99 kg/l

light yield:

ca. 10.000 ph/MeV

fluorescence decay: 2.6ns

attenuation length: ≤12m (purified)

scattering length: 23m

+80% Dodecane, C₁₂H₂₆

density: 0.80 kg/l light yield: ca. 85%

fluorescence decay slower attenuation length: >12m scattering length: 33m

density: 0.86 kg/l

light yield: comparable

fluorescence decay: 5.2ns attenuation length: <20m scattering length: 25m

- Detector diameter of 30m or more is well feasible!
- Fluorescence times (3-5ns) and light yield (200-500pe/MeV) depend on the solvent.
- LAB is currently favored.

Status of Scintillator R&D

fluorescence time

Light yield, spectra and fluorescence: by now well understood

 ■ Light transport: optical scattering and absorption length measured for small samples
 → precise measurement over large distances

 Scintillator response to different particles: gamma/neutron pulse shape and quenching (MLL Garching, Rossendorf)

Photomultipliers

Default Configuration

- 13,500 PMs of 20" cathode diameter
- optical coverage: 30%

Smaller Photomultipliers

- machined PMs much cheaper
- depends on cost per DAQ channel

Usage of Light Concentrators

- Borex cones double optical coverage
- Larger cones seem possible in LENA

Light cone used in the Borexino prototype CTF, eight-fold light collection

Pressure resistance/encapsulation is needed for bottom PMTs (10 bar)

PMT Survey at LNGS

Test facility of Borexino

- very precise light source: laser diode (410nm), pulse FWHM 30 ps
- fast electronics: trigger and DAQ electronics jitter < 100 ps

Studied properties

- time behavior (transit time spread)
- afterpulse rates
- dark noise levels
- SPE spectrum

R6091 (3")

R6594 (5")

Hamamatsu PMTs:

R5912 (8")

R7081 (10")

Example: R6594 (5") transit time

PMT Survey: Current Status

Good candidates:

- R6594 (5"): low jitter, very few afterpulses, moderate dark noise many late pulses and early pulses
- ETL9351 (8"): (used in Borexino) low jitter (gaussian), low dark noise high after pulsing, many late pulses
- R5912 (8"): low jitter (strong exponential tail), low dark noise moderate after pulsing

Further steps (in Garching):

- test of PMT dynamic range
- ultrafast afterpulses (Δt <30ns), prepulses
- test of several tubes of the same type to reduce uncertainties
- close collaboration with Hamamatsu (modifications?)

Electronics and DAQ Requirements

- 45k 8"-PMs or 90k 5"-PMs: reduction of channels, cabling → PMm2
- Energies of 100 keV to 10 GeV: dynamic range 1 to >100 pe per PM
- reduce afterpulsing for cosmogenic neutrons and time resolution
- at least for groups of PMs (1m²): FADC readout of analog sum for GeV-neutrino vertex reconstruction
- concrete tank: trigger rates of kHz

- LENA will be a multipurpose neutrino observatory
- low-energy neutrino detection well understood
- track reconstruction at GeV energies looks very promising, but further work is necessary
- work on liquid scintillator mostly completed, investigation of photomultipliers started, electronics and DAQ design needed