

Finnish Underground Lab

Juha Peltoniemi

Centre for Underground Physics in Pyhäsalmi University of Oulu cupp.oulu.fi

The CUPP project

- CUPP Centre for Underground Physics in Pyhäsalmi
- The purpose is to establish an underground research centre in the Pyhäsalmi mine
- Funded mostly by EU regional development fund
- Some 20 members
 - Mostly students

University of Jyväskylä

Pyhäsalmi Mine Ltd Stonello Software Ltd Rockplan Ltd Oulu Southern Institute director Dr Eelis Kokko

University

of Oulu

CUPP project

Location of the Pyhäsalmi site

- Pyhäsalmi mine in Pyhäjärvi town
- Connections
 - Roads open all year round
 - Pyhäjärvi-Oulu: 2 h car drive
 - Pyhäjärvi-Jyväskylä: 2 h car drive
 - Pyhäjärvi-Helsinki: bus & train connections
 - 4 airports within 2 hours drive, connections
 - Oulu-Helsinki: ca 20 flights a day
 - Oulu-Stockholm: 1–2 flights a day
 - Railway to the mine
- Distance to accelerators
 - CERN 2300 km
 - Density profile well known
 - JPARC 7100 km

Pyhäsalmi Mine

- Pyhäsalmi Mine Ltd
 - Inmet Mining Corporation, Canada
 - Produces zinc, copper and pyrite (FeS₂)
- The old mine
 - about 1050 m deep
 - Operated 1962–2001
 - Many free caverns available now
- The new mine
 - active since July 2001
 - known ore reserves until ca 2016
 - Depends on future metal prices
 - greatest depth 1444 m
 - the deepest metal mine in Europe
 - access by lift (2 min) or via decline by car (40 min) or by running (1 h 4 min)

Present and available premises

Other possible sites in Finland

- Several other active, planned or abandoned mines for additional or alternative sites
 - Distance to accelerator
 - Distance to nuclear reactors
 - Logistics
- Deepening another site is not completely infeasible
 - ✤ Ca 20 000 EUR/m.
 - ✤ e.g. 800->1400 = 10 MEUR
- New hole in virgin ground?
 - Additional cost (vs lab in mine)
 - 20 MEUR for 1400 m depth
 - 5 MEUR for 600 m
 - May select the optimal site
 - Need well known hard rock
 - Most of Finland

Nuclear reactor background

- Relevant for LENA
- A new reactor under construction in Finland
 - World's largest single reactor
 - Electric power 1.6 GW
 - 10 % increase of flux
 - Probably compensated by the shutdown of Sosnovy Bor

electron anti-neutrino events / kton year before Olkiluoto-3

Neutrinos (10 ⁸ 1/m ² s)
40
54
175
196
190
408
100
33
13

electron anti-neutrino events / kton year after Olkiluoto-3

Special features of Finnish rock

- Typically very hard rock
 - Rockbed very old (1-2 Ga) and thick
 - Similar zones in Scandinavia, in north-eastern Canada and in several separated areas in Asia, Africa and South America
- Advantages
 - Rock construction easy
 - Rock is very stable
 - Deep rock is water tight
 - Comfortable temperatures (23 C at 1500 m) 70
- Challenges

Rock studies

- Properties of rock, rock mechanics and constructibility of the laboratory in Pyhäsalmi mine studied in a pre-feasibility study
 - No show-stoppers
 - Very good rock
 - Rock types vary, sometimes even at O(1m) scale.
 - Natural radioactivity rather low (but varies)
- Studied several caverns in detail, and found feasible
 - Inclined hall 20 m x 20 m x 120 m (towards CERN)
 - Cylinder d=25 m, h=25 m

Cavern for a Detector for Neutrino Beam

- Included in the pre-feasibility study 2002 ۲
- Studied in detail a cavern of 20 m x 20 m x 120 m 0
 - Inclined 11 degrees downwards
 - Direction almost orthogonal to main stress component (bad)
 - Area 3000 m2, volume 68200 m3
- Stress behaviour studied
 - Required reinforcing normal
 - No obstacles

Cost estimate for neutrino cavern

- Excludes access and general laboratory structures
- Includes
 - Detailed rock studies & architectural design
 - Excavation, reinforcing, water shielding
 - Electric power line 1 MW
 - Cooling, 1 MW machine in the surface
 - Cranes, internal lifts and staircases
 - All clean room
 - Basic radiation protection

Ready to install the experiment

	EUR	EUR/m ²	EUR/m ³
Purchaser's costs 14 %	1 300 000 €		
Rock construction and excavation	5 400 000 €		
Building technical work	3 050 000 €		
HVAC	810 000 €		
Contingency 20 %	2 110 000 €		
TOTAL	12 670 000 €	2300	185

Costs for constructing underground laboratory

- Large underground laboratory hall: typically 200 EUR/m³
 - Rock construction 40 % (80 EUR/m³)
 - Drill & blast: cheap, can be automatized
 - rock removal: variable, but typically < 10 EUR/m³
 - reinforcing (shotcreting, bolting): manual work, expensive
- Raw caverns much cheaper < 50 EUR/m³
- Access construction:
 - Wide decline (tunnel, ramp) with heavy truck access: 2000 EUR/m
 - Narrow tunnel: 1000 EUR/m
 - Shaft (7 m) 5000 EUR/m, (2 m) 1000 EUR/m.
 - Own hoist (lift) to surface 2-10 MEUR
- Note: In Finland it is typically cheaper to construct large halls (shallow) underground than in the surface.

LENA in Finland

- Need ca 30 m wide cavern
 - Rock mechanics not studied in detail
 - Probably not a major problem to construct
 - Slightly smaller cavern (20 x 20 x 120) found feasible
 - Need to study carefully the properties of rock in selected site
- Estimated cost for rock construction: 10 MEUR
 - Compare: An underground oil tank of 45 000 m³: 7 MEUR
- Environmentally robust
 - Well below the biosphere

Liquid argon experiment in Finland?

- Cavern for 10 kton experiment trivial
- Cavern for 100 kton experiment non-trivial
 - 70 m span requires special (expensive) techniques
 - Need exceptionally good (hard) rock
 - Feasilibility in Pyhäsalmi not studied
 - Depends on the depth (rock stress is important): 200 m "easy"
 - Excavation cost probably 10-30 MEUR

- Availability of liquid argon
 - Production in Finland >100 kton/a
 - Free capacity in Finland 20-30 kton/a
 - Price < 300 EUR/ton (150 ?)</p>

Huge Water Cherenkov in Finland?

- Construction of 1 000 000 m³ cavern very non-trivial
 - A spherical cavern with r=70 m virtually impossible everywhere
 - A long tube of 40-60 m diameter may be possible
 - Array of <100 000 m³ caverns easiest
 - Requires very careful site selection and detailed rock mechanical studies
- Possibilities in Finland unclear
 - So far no specific push from scientific community (v-beams etc.)
 - No studies for exceptionally large caverns made so far
 - Probably no worse than elsewhere
 - Estimated cost of rock construction: 100-300 MEUR
 - Higher for large-span caverns
 - Rather impossible in an operational mine
 - Wait for closure or do it elsewhere
- Water
 - Water certainly available everywhere

Conclusions

- Large volume detectors can be hosted in Finland
 - Pyhäsalmi mine (1444 m)
 - Mine probably closed at 2016
 - Pay more if lab constructed parallel to mining
 - Other underground sites (0-800 m) may be available now
 - Additional cost of 10 MEUR if deepened to 1400 m
- Advantages
 - Distance to accelerators (depends...)
 - Low nuclear reactor flux
 - Environmentally robust
 - Good rock low construction cost
 - No excessive temperatures in deep sites
 - "Optimal site for a supernova detector"
- Experiments:
 - LENA: feasible, 10-15 MEUR
 - GLACIER: probably doable 10-30 MEUR
 - UNO/MEMPHYS: unclear (why here?) 100-300 MEUR