
MW – MZ correlation
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with loop contributions
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∆r : quantum correction
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complete at 2-loop order

1-loop examples

Loop 
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e of quantum 
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Ansgar Denner 28 24. June 2003full structure of SM
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Z resonance
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• effective Z boson couplings with higher-order ∆gV,A

vf → gfV = vf +∆gfV , af → gfA = af +∆gfA

• effective ew mixing angle (for f = e):
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importance of two-loop calculations
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Global analysis within the SM
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before the top quark was discovered (< 1995):

indirect mass determination ⇒ mt = 178± 8+17
−20GeV
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The way to the Higgs boson

development of bounds from direct and indirect searches
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Global fit to the Higgs boson mass
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The direct search for the Higgs boson

Higgs production at LEP:

Sear
h for the Standard Model Higgs at LEP

Dominant produ
tion pro
ess: e+e�! ZH

e�
e+

Z
HZ

Dominant de
ay pro
ess: H ! b�b
b

�bH

Highest energy: ECM � 206 GeV

Ex
lusion limit, 95% C.L.:

MH > 114:4GeV :

excluded MH < 114GeV

Higgs production at the Tevatron:

H

t

t

t

H

W, Z
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Higgs production at the LHC

Higgs production modes

• Dominant Higgs production modes expected from the SM at m =125 GeV:

ggF VBF

ttH

VH

VBF

VH

ttH

Handbook of Higgs Cross sections,
arXiv:1101.0593, arXiv:1201.3084



Higgs boson decay channels

branching ratios BR(H → X) = Γ(H→X)
Γ(H→all)
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H → γ γ
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Higgs decays into 4 fermions

also below V V threshold with one or two V off-shell

a)
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H → ZZ → l+l− l+l−
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A Standard Model Higgs boson at the LHC?

)µSignal strength (
  -1  0 +1

Combined

 4l→ (*)
 ZZ→H 

γγ →H 

νlν l→ (*)
 WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 125.5 GeVHm

 0.20± = 1.30 µ

ATLAS Preliminary

H mass ATLAS (GeV) H mass CMS (GeV)

125.5 ± 0.2 ± 0.6 125.7 ± 0.3 ± 0.3

Theory: σ(pp → H) · BR(H → X)



Landau pole

Higgs self coupling is scale dependent, λ(Q)

The triviality boundLet us have a look at the one{loop radiative 
orre
tions to the Higgs boson quarti
 
oupling,taking into a

ount for the present moment only the 
ontributions of the Higgs boson itself.The Feynman diagrams for the tree{level and the one{loop 
orre
tions to the Higgs bosonself{
oupling are depi
ted in Fig. 1.17.� ��HH HH � � � �+ + +Figure 1.17: Typi
al Feynman diagrams for the tree{level and one{loop Higgs self{
oupling.The variation of the quarti
 Higgs 
oupling with the energy s
ale Q is des
ribed by theRenormalization Group Equation (RGE) [127℄ddQ2 �(Q2) = 34�2 �2(Q2) + higher orders (1.171)The solution of this equation, 
hoosing the natural referen
e energy point to be the ele
-troweak symmetry breaking s
ale, Q0 = v, reads at one{loop�(Q2) = �(v2) �1� 34�2 �(v2) logQ2v2 ��1 (1.172)The quarti
 
ouplings varies logarithmi
ally with the squared energy Q2. If the energy ismu
h smaller than the ele
troweak breaking s
ale, Q2 � v2, the quarti
 
oupling be
omesextremely small and eventually vanishes, �(Q2) � �(v2)=log(1) ! 0+. It is said that thetheory is trivial, i.e. non intera
ting sin
e the 
oupling is zero [128℄.In the opposite limit, when the energy is mu
h higher that weak s
ale, Q2 � v2, thequarti
 
oupling grows and eventually be
omes in�nite, �(Q2) � �(v2)=(1 � 1) � 1. Thepoint, 
alled Landau pole, where the 
oupling be
omes in�nite is at the energy�C = v exp�4�23� � = v exp�4�2v2M2H � (1.173)The general triviality argument [119, 129℄ states that the s
alar se
tor of the SM is a �4{theory, and for these theories to remain perturbative at all s
ales one needs to have a 
oupling� = 0 [whi
h in the SM, means that the Higgs boson is massless℄, thus rendering the theorytrivial, i.e. non{intera
ting. However, one 
an view this argument in a di�erent way: one
an use the RGE for the quarti
 Higgs self{
oupling to establish the energy domain in whi
h65

variation with scale Q described by RGE

Q2 dλ

dQ2
= β(λ) =

3

4π2
λ2

solution:

λ(Q) =
λ(v)

1− 3
4π2λ(v) log

Q2

v2

with λ(v) =
M2

H

2v2

diverges at scale Q = ΛC (Landau pole)

ΛC = v exp

(

4π2v2

3M2
H

)

maximum Higgs mass by condition Λ > M



self-coupling diverges at

ΛC = v exp

(

4π2v2

3M2
H

)

maximum Higgs mass by condition ΛC > MH

⇒ MH < 800GeV



vacuum stability

top-quark Yukawa coupling gt ∼ mt contributes to the running Higgs
self coupling λ(Q) through top loop ∼ g4t

the SM is valid, i.e. the energy 
ut{o� �C below whi
h the self{
oupling � remains �nite.In this 
ase, and as 
an be seen from the previous equation, if �C is large, the Higgs massshould be small to avoid the Landau pole; for instan
e for the value �C � 1016 GeV, oneneeds a rather light Higgs boson, MH <� 200 GeV. In turn, if the 
ut{o� �C is small, theHiggs boson mass 
an be rather large and for �C � 103 GeV for instan
e, the Higgs mass isallowed to be of the order of 1 TeV.In parti
ular, if the 
ut{o� is set at the Higgs boson mass itself, �C =MH , the require-ment that the quarti
 
oupling remains �nite implies thatMH <� 700 GeV. But again, thereis a 
aveat in this argument: when � is too large, one 
annot use perturbation theory any-more and this 
onstraint is lost. However, from simulations of gauge theories on the latti
e,where the non{perturbative e�e
ts are properly taken into a

ount, it turns out that oneobtains the rigorous bound MH < 640 GeV [130℄, whi
h is in a remarkable agreement withthe bound obtained by naively using perturbation theory.The stability boundIn the pre
eding dis
ussion, only the 
ontribution of the Higgs boson itself has been in
ludedin the running of the quarti
 
oupling �. This is justi�ed in the regime where � is ratherlarge. However, to be 
omplete, one needs to also in
lude the 
ontributions from fermionsand gauge bosons in the running. Sin
e the Higgs boson 
ouplings are proportional to theparti
le masses, only the 
ontribution of top quarks and massive gauge bosons need to be
onsidered. Some generi
 Feynman diagrams for these additional 
ontributions are depi
tedin Fig. 1.18.The one{loop RGE for the quarti
 
oupling, in
luding the fermion and gauge boson
ontributions, be
omes [127℄d�dlogQ2 ' 116�2 �12�2 + 6��2t � 3�4t � 32�(3g22 + g21) + 316 �2g42 + (g22 + g21)2�� (1.174)where the top quark Yukawa 
oupling is given by �t = p2mt=v. The �rst e�e
t of thisextension is that for not too large � values, the additional 
ontributions will slightly alterthe triviality bounds. In parti
ular, the s
ale at whi
h the New Physi
s should appear willdepend on the pre
ise value of the top quark mass.�� ��HH HHF �� ��VFigure 1.18: Diagrams for the one{loop 
ontributions of fermions and gauge bosons to �.66variation with scale Q described by RGE

Q2 dλ

dQ2
=

3

4π2

(

λ2−
m4

t

v4

)

approximate solution:

λ(Q) = λ(v)−
3m4

t

2π2v4
log

Q

v

λ(Q) < 0 for Q > ΛC → vacuum not stable

high value of ΛC needs MH large enough



combined effects, RGE in two-loop order:

dλ

dt
=

1

16π2

(

12λ2 − 3 g4t + 6λ g2t + · · ·
)
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