
Übung zu Physik II für Geodäsie und Geoinformation

Prof. Dr. L. Oberauer Sommersemester 2013

Blatt Nr. 5 06.06.2013

Aufgabe 1 Beschleunigte Elektronen

Ein Elektron wird mit einer Spannung von $U_a = 500 \,\mathrm{V}$ auf einer Strecke von 10 cm beschleunigt. Direkt nach der Beschleunigung tritt das Elektron in einen Plattenkondensator ein. Das elektrische Feld im gezeigten Kondensator ist homogen und vertikal zur Bewegungsrichtung (v_{0x}) . Der Plattenkondensator hat eine Spannung von $U_{kon} = 300 \,\mathrm{V}$, die Platten haben einen Abstand von $d = 3 \,\mathrm{cm}$ und eine Länge von $l = 5 \,\mathrm{cm}$. Das abgelenkte Elektron verlässt den Kondensator und trifft in einem Meter Entfernung auf einen Schirm, an dem es detektiert wird.

- a. Zeigen Sie, dass die Ortsfunktion y(x) für das Elektron mit $y(x) = \frac{U_{kon}}{4dU_a}x^2$ beschrieben werden kann.
- b. Bestimmen Sie den Winkel (φ) und den Abstand b um den das Elektron abgelenkt wird, wenn Sie die oben angegebenen Werte benutzen.

Aufgabe 2 12-V-Autobatterie

Eine handelsüblichen Autobatterien mit 12 V Ausgangsspannung wird die Kapazität der mit 45 Ah angegeben. Beim Anlassen eines Autos liefert die Batterie einen Strom von 20 A, dabei fällt die Klemmspannung auf 11,4 V ab.

- a. Wie hoch ist der Innenwiderstand der Batterie?
- b. Welche Leistung gibt die Batterie dabei ab und welcher Bruchteil wird davon an den Anlasser abgegeben?
- c. Um welchen Wert vermindert sich die chemische Energie der Batterie, wenn man den Anlasse für 3 min betätigt?
- d. Wie viel Startvorgänge können mit einer vollen Batterie durchgeführt werden, wenn ein Startvorgang 2 s dauert und die Kapazität der Batterie mit 45 Ah angegeben wird ?
- e. Wie lange kann man das Abblendlicht am Fahrzeug über die Batterie betreiben, wenn dieses eine Leistung von 35 Watt benötigt?
- f. Welche Wärmemenge wird in der Batterie erzeugt, wenn ein Startvorgang 3 min dauert?

Aufgabe 3 Elektronen im Leiter

Durch einen 1,63 mm dicken und 10 m langen Kupferdraht wird 3 Sekunden lang eine Strom von 1 Ampere geleitet. (Hinweis: Kupfer hat eine Molaremasse von 63,5 g/Mol und stellt im Mittel 1 Leitungselektron pro Atom zur Verfügung)

- a. Berechnen Sie die effektive Geschwindigkeit der Leitungselektronen mittels $v_{eff} = \sqrt{\frac{3k_bT}{m_e}}$ bei einer Temperatur von 25° C.
- b. Berechnen Sie die Driftgeschwindigkeit (v_d) der Leitungselektronen und vergleichen Sie v_d mit v_{eff} . Was ist der Unterschied zwischen v_d und v_{eff} .
- c. Wie viele Elektronen werden in dieser Zeit durch den Leiter geschickt?
- d. Welche Spannung muss an diesem Leiter mindestens angelegt werden, um diesen Stromfluss zu erzeugen? (Hinweis: der spezifische Widerstand von Kupfer ist $\varrho = 1,678 \cdot 10^{-2} \,\Omega \cdot mm^2/m$)
- e. Wie dick muss ein Kupferdraht sein damit er bei einer maximalen Wärmeentwicklung von 2 W/m einen Strom von 20 A sicher leitet und keine Brand verursacht wird?
- f. Der spezifische Widerstand verschiedener Materialien hängt in der Realität von der Temperatur ab über $\varrho(T) = \varrho(T_0) \cdot (1 + \alpha \cdot (T T_0))$. Wie erklären Sie sich das manche Materialien bei einer Temperaturerhöhung besser leiten andere dagegen schlechter ?

Aufgabe 4 Gradient

Gegeben ist das Potential einer Punktladung q im sonst kräftefreien Raum: $\varphi(r) = \frac{1}{4\pi\epsilon_0} \frac{-q}{|\vec{r}|}$

- a. Berechnen Sie das zu $\varphi(r)$ gehörende elektrische Feld $E(\vec{r})$ mittels $\vec{E}(\vec{r}) = -\vec{\nabla}\varphi(\vec{r})$
- b. Berechnen Sie mit dem Ergebnis von a) die Größe von $\left| \vec{E}(\vec{r}) \right|$